Skip to main content
Log in

Two types of alkaline volcanics in the southwestern Iberian margin: The causes of their diversity

  • Marine Geology
  • Published:
Oceanology Aims and scope

Abstract

The diverse geodynamic conditions of the parental magma’s melting are responsible for the compositional diversity of the alkaline volcanics near the southwestern margin of Iberia. The petrological-geochemical data show that the volcanics of the Gorringe Bank originated within the continental plate. The parental melilitite melts depleted in silica and anomalously enriched with trace elements could have been generated only in deep settings with a low degree of metasomatically enriched mantle matter melting. The volcanic melilitite-nephelinite-phonolite series is widespread in alkaline provinces of the Eurasian, African, and other continental plates. The Ampere, Josephine, and other seamounts and islands of the region are largely composed of volcanic rocks belonging to the picrobasalt-hawaiite-mugearite association. Their parental magmas were generated within the oceanic plate at shallower depths under a higher degree of moderately enriched oceanic lithospheric mantle melting. Both series of volcanics were formed under the influence of mantle plumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. V. Verzhbitskii, A. M. Gorodnitskii, E. M. Emel’yanov, et al., “New Data on Geological Structure and Tectonic Development of the Gorringe Ridge Seamount (Northern Atlantic),” Geotektonika, No. 1, 12–22 (1989).

  2. A. F. Grachev, “Final Volcanism of Europe and Its Geodynamic Nature,” Fizika Zemli, No. 8, 11–46 (2003).

  3. L. V. Dmitriev, S. Yu. Sokolov, W. G. Melson, and T. O’Hirn, “Plume and Spreading Associations of Basalt and Their Reflection in the Petrological and Geophysical Parameters in the Northern Mid-Atlantic Ridge,” Rossiiskii Zhurnal Nauk o Zemle 1, No. 1, 457–476 (1999).

    Google Scholar 

  4. S. M. Zhmodik, V. A. Akimtsev, A. S. Zhmodik, and S. T. Shestel’, “Mineralogical and Geochemical Features of the Interaction of Hydrothermal Fluids with Basalts,” Geol. Geofiz. 37, No. 1, 182–192 (1996).

    Google Scholar 

  5. Magmaticl Rocks (Nauka, Moscow, 1985), part 1 [in Russian].

  6. V. V. Matveenkov and A. I. Al’mukhamedov, “Alkaline Volcanism of the Gorringe Bank, the Atlantic Ocean,” Petrologiya 4, No. 1, 46–56 (1996).

    Google Scholar 

  7. V. V. Matveenkov, S. G. Poyarkov, O. B. Dmitrienko, et al., “Geological Structural Peculiarities of the Seamounts of Azores-Gibraltar Zone (the Results of Drilling),” Okeanologiya 33, No. 5, 752–762 (1993).

    Google Scholar 

  8. K. V. Popov, B. A. Bazylev, V. P. Shcherbakov, and A. K. Gapeev, in Proceedings of the XVII International Scientific Conference (School) on Marine Geology, Geology of the Seas and Oceans (GEOS, Moscow, 2009), Vol. 5, pp. 124–128.

    Google Scholar 

  9. T. I. Frolova and I. A. Burikova, Magmatic Formations of the Present Geotectonic Provinces (Moscow State Univ., Moscow, 1997) [in Russian].

    Google Scholar 

  10. E. A. Chernysheva and S. I. Kostrovitskii, “Olivine Melilitites of Kimberlitic and Carbonatitic Formations in the Dikes and Diatremes of the Eastern Siberia,” Geiokhimiya, No. 12, 1217–1225 (1998).

  11. E. A. Chernysheva and G. S. Kharin, “Alkaline Magmatism in the History of the Norwegian-Greenland Basin,” Petrologiya 15, No. 3, 317–323 (2007).

    Google Scholar 

  12. E. A. Chernysheva and G. S. Kharin, in Proceedings of the XVII International Scientific Conference (School) on Marine Geology, Geology of the Seas and Oceans (GEOS, Moscow, 2009), Vol. 5, pp. 282–284.

    Google Scholar 

  13. A. D. Beard, H. Downes, E. Hegner, et al., “Mineralogy and Geochemistry of Devonian Ultramafic Minor Intrusions of the Southern Kola Peninsula, Russia: Implications for the Petrogenesis of Kimberlites and Melilitites,” Contrib. Mineral. Petrol. 130, 288–303 (1998).

    Article  Google Scholar 

  14. M. Becker and A. P. Le Roex, “Geochemistry of South African On- and Off-Craton, Group I and Group II Kimberlites: Petrogenesis and Source Region Evolution,” J. Petrol. 47, 673–703 (2006).

    Article  Google Scholar 

  15. J. Bernard-Griffiths, G. Gruau, G. Cornen, et al., “Continental Lithospheric Contribution to Alkaline Magmatism: Isotopic (Nd, Sr, Pb) and Geochemical (REE) Evidence from Serra de Monchique and Mount Ormonde Complexes,” J. Petrol. 38, 115–132 (1997).

    Article  Google Scholar 

  16. G. Chazot, S. Charpentier, J. Kornprobst, et al., “Lithospheric Mantle Evolution during Continental Break-up: The West Iberia Non-Volcanic Passive Margin,” J. Petrol. 46, No. 12, 2527–2568 (2005).

    Article  Google Scholar 

  17. E. A. Chernysheva and G. S. Kharin, in “XXVI International Conference (School) on Geochemistry of Alkaline Rocks, Abstract of Papers” (Moscow, 2009), pp. 35–36.

  18. G. Cornen, “Petrology of the Alkaline Volcanism of Gorringe Bank (Southwest Portugal),” Marine Geol. 47, Nos.1/2, 101–130 (1982).

    Article  Google Scholar 

  19. R. M. Ellam, “Lithospheric Thickness as a Control on Basalt Geochemistry,” Geology 20, 153–156 (1992).

    Article  Google Scholar 

  20. J. Geldmacher and K. Hoernle, “The 72 Ma Geochemical Evolution of the Madeira Hot Spot (Eastern North Atlantic): Recycling of Paleozoic (500 Ma) Oceanic Lithosphere,” Earth Planet. Sci. Lett. 183, 73–92 (2000).

    Article  Google Scholar 

  21. G. H. Gudfinnsson and D. C. Presnall, “Continuous Gradations among Primary Carbonatitic, Kimberlitic, Melilititic, Basaltic, Picritic, and Komatiitic Melts in Equilibrium with Garnet Lherzolite at 3–8 GPa,” J. Petrol. 46, No. 8, 1645–1659 (2005).

    Article  Google Scholar 

  22. K. Hoernle and H.-U. Schmincke, “The Petrology of the Tholeiites Through Melilite Nephelinites on Gran Canaria, Canary Islands: Crystal Fractionation, Accumulation, and Depths of Melting,” J. Petrol. 34, No. 3, 573–597 (1993).

    Google Scholar 

  23. K. Hoernle, Y.-Sh. Zhang, and D. Graham, “Seismic and Geochemical Evidence for Large-Scale Mantle Upwelling Beneath the Atlantic and Western and Central Europe,” Nature 374, 34–39 (1995).

    Article  Google Scholar 

  24. A. W. Hofmann, “Mantle Geochemistry: The Message from Oceanic Volcanism,” Nature 385, 219–228 (1997).

    Article  Google Scholar 

  25. J. Keller, A. N. Zaitsev, and D. Wiedenmann, “Primary Magmas at Oldoinyo Lengai: The Role of Olivine Melilitites,” Lithos. 91, 150–172 (2006).

    Article  Google Scholar 

  26. W. F. McDonough and S. S. Sun, “The Composition of the Earth,” Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  27. S. P. Srivastava, H. Schouten, W. R. Roest, et al., “Iberian Plate Kinematics: A Jumping Plate Boundary Between Eurasia and Africa,” Nature 344, 756–759 (1990).

    Article  Google Scholar 

  28. K. H. Wedepohl, E. Gohn, and G. Hartmann, “Cenozoic Alkali Basaltic Magmas of Western Germany and Their Products of Differentiation,” Contrib. Mineral. Petrol. 115, 253–278 (1994).

    Article  Google Scholar 

  29. M. Wilson, J. M. Rosenbaum, and E. A. Dunworth, “Melilitites: Partial Melts of the Thermal Boundary Layer?” Contrib. Mineral. Petrol. 119, 181–196 (1995).

    Article  Google Scholar 

  30. H.-J. Yang, F. A. Frey, and D. A. Clague, “Constraints on the Source Components of Lavas Forming the Hawaiian North Arch and Honolulu Volcanoes,” J. Petrol. 44, No. 4, 603–627 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Chernysheva.

Additional information

Original Russian Text © E.A. Chernysheva, V.V. Matveenkov, A.Ya. Medvedev, 2012, published in Okeanologiya, 2012, Vol. 52, No. 5, pp. 733–743.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernysheva, E.A., Matveenkov, V.V. & Medvedev, A.Y. Two types of alkaline volcanics in the southwestern Iberian margin: The causes of their diversity. Oceanology 52, 677–687 (2012). https://doi.org/10.1134/S0001437012050049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437012050049

Keywords

Navigation