Skip to main content
Log in

The role of gametes of the macroalgae Ascophyllum nodosum (L.) Le Jolis and Fucus vesiculosus L. (Fucales, Phaeophyceae) in summer nanoplankton of the White Sea coastal waters

  • Marine Biology
  • Published:
Oceanology Aims and scope

Abstract

Studies of macrophytes in the coastal zone of the Artic Seas, including the White Sea, have shown the essential role of these algae in the activity of the coastal half-latitude ecosystems. In summer, during the macrophyte reproduction period, a great number of reproduction products are released into the water. For a short time, this considerably affects the ratio of the nanoplankton in the populations that inhibit the vast and shallow coastal areas. At different coastal sites in Chernorechenskaya Inlet, Kadalaksha Bay, during the period of intensive reproduction of Ascophyllum nodosum and Fucus vesiculosus, 42 plankton samples were collected in 2005. During this period the concentration of antherozoids in the water reached 55000 cells/ml (216 mg C/m3). The number of eggs was within the range of 0.05–0.7 cells/ml. The proportion of antherozoids in the total biomass of nanoplankton varied at different coastal sites from 0.37 to 99%, with a mean of 46% for the reproduction period of A. nodosum, and only 7% for the reproduction period of F. vesiculosus. As was shown by counts of F. vesiculosus female gametes in sedimentation traps, 1 m2 of the macrophyte bed (assuming 100% coverage) produces 18000–108000 eggs per day (0.33–2 mg C). The calculated flux of the reproductive material from the brown algae beds to the coastal water shows good agreement with the sample counts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. I. Blinova, Macrophytic Algae and Grasses of Seas of the European Part of Russia (Flora, Distribution, Biology, Reseves, and Mariculture) (Izd. VNIRO, Moscow, 2007) [in Russian].

    Google Scholar 

  2. I. V. Burkovskii, Structural-Functional Organization and Stability of Marine Benthic Communities (as Exemplified by the Sandy Littoral of the White Sea) (Mosk. Gos. Univ., Moscow, 1992) [in Russian].

    Google Scholar 

  3. K. L. Vinogradova, “Division Rhodophyta (Red Algae),” in Life of Plants, Vol. 3: Algae. Lichens (Prosveshchenie, Moscow, 1977), pp. 192–250 [in Russian].

    Google Scholar 

  4. V. B. Vozzhinskaya, “Fucoids of the White Sea, Their Distribution, Biologyof Development, and Production,” in Basics of the Biological Productivity of the Ocean and Its Use (Nauka, Moscow, 1971), pp. 172–182 [in Russian].

    Google Scholar 

  5. V. B. Vozzhinskaya, Benthic Macrophytes of the White Sea (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  6. V. B. Vozzhinskaya and A. N. Kamnev, Ecological-Biological Bases of Cultivation and Use of Marine Algae (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  7. V. B. Vozzhinskaya, A. S. Tsapko, E. I. Blinova, et al., Commercially Important Algae of the USSR: A Handbook (Pishchevaya promyshlennost’, Moscow, 1971) [in Russian].

    Google Scholar 

  8. A Course in Lower Plants), Ed. by M. V. Gorlenko (Vysshaya shkola, Moscow, 1981) [in Russian].

    Google Scholar 

  9. A. A. Kalugina-Gutnik, Phytobenthos of the White Sea (Naukova dumka, Kiev, 1975) [in Russian].

    Google Scholar 

  10. A. N. Kamnev, Structure and Functions of Brown Algae (Mosk. Gos. Univ., Moscow, 1989) [in Russian].

    Google Scholar 

  11. V. V. Kuznetsov, The White Sea and the Biological Characteristics of Its Flora and Fauna (Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    Google Scholar 

  12. L. L. Kuznetsov and E. V. Shoshina, Phytocenoses of the Barents Sea (Physiological and Structural Characteristics) (Izd. KNTs RAN, Apatity, 2003) [in Russian].

    Google Scholar 

  13. Yu. A. Mazei, Organization of the Microbenthos Community in the Zone of Mixing of River and Marine Waters, Candidate’s Dissertation in Biology (Mosk. Gos. Univ., Moscow, 2002) [in Russian].

    Google Scholar 

  14. O. A. Pronina, “Raw Resources and Harvest of Algae in the White Sea,” Rybnoe Khozyaistvo, No. 4, 44–47 (2002).

  15. Z. P. Tikhovskaya, “Primary Production of Fucoids in Bays of Eastern Murman,” Tr. Murmansk. Biol. Stantsii 1, 164–188 (1948).

    Google Scholar 

  16. A. A. Udalov, V. O. Mokievskii, and E. S. Chertoprud, “Influence of the Salinity Gradient on the Distribution of Meiobenthos in the Chernaya River Estuary (White Sea),” Okeanologiya 45(5), 719–727 (2005) [Oceanology 45 (5), 680–688 (2005)].

    Google Scholar 

  17. K. M. Khailov, A. V. Prazukin, S. A. Kovardakov, and V. E. Rygalov, Functional Morphology of Marine Multicellular Algae (Naukova dumka, Kiev, 1992) [in Russian].

    Google Scholar 

  18. P. Aberg and H. Pavia, “Temporal and Multiple Scale Spatial Variation in Juvenile and Adult Abundance of the Brown Alga Ascophyllum nodosum,” Mar. Ecol. Progr. Ser. 158, 111–119 (1997).

    Article  Google Scholar 

  19. S. Andersson, L. Kautsky, and A. Kalvas, “Circadian and Lunar Gamete Release in Fucus vesiculosus in the Atidal Baltic Sea,” Mar. Ecol. Progr. Ser. 110, 195–201 (1994).

    Article  Google Scholar 

  20. P. O. Ang, “Natural Dynamics of a Fucus distichus (Phaeophyceae, Fucales) Population,” Mar. Ecol. Progr. Ser. 78, 71–85 (1991).

    Article  Google Scholar 

  21. C. D. Armsler and R. B. Searles, “Vertical Distribution of Seaweed Spores in a Water Column Offshore of North Carolina,” J. Phycol. 16, 617–619 (1980).

    Article  Google Scholar 

  22. S. Bäck, J. C. Collins, and G. Russel, Comparative Reproductive Biology of the Gulf of Finland and the Irish Sea Fucus vesiculosus L. Sarsia (London) 78 265–272 (1993).

    Google Scholar 

  23. L. C. Bacon and R. L. Vadas, “A Model for Gamete Release in Ascophyllum nodosum (Phaeophyta),” J. Phycol. 27(issue 2), 166–173 (1991).

    Article  Google Scholar 

  24. R. Berger, T. Malm, and L. Kautsky, “Two Reproductive Strategies in Baltic Fucus vesiculosus (Phaeophyceae),” Eur. J. Phycol. 36(3), 265–273 (2001).

    Article  Google Scholar 

  25. M.-L. Berndt, J. A. Callow, and S. H. Brawley, “Gamete Concentrations and Timing and Success of Fertilization in a Rocky Shore Seaweed,” Mar. Ecol. Progr. Ser. 226, 273–285 (2002).

    Article  Google Scholar 

  26. E. Billard, E. A. Serrãp, G. A. Pearson, et al., “Analysis of Sexual Phenotype and Prezigotic Fertility in Natural Populations of Fucus spiralis, F. vesiculosus (Fucaceae, Phaeophyceae) and Their Putative Hybrids,” Eur. J. Phycol. 40, 397–407 (2005).

    Article  Google Scholar 

  27. S. H. Brawley, “Fertilization in Natural Populations of the Dioecious Brown Alga Fucus ceranoides and the Importance of the Polyspermy Block,” Mar. Biol. 113, 145–157 (1992).

    Article  Google Scholar 

  28. S. H. Brawley and L. E. Johnson, “Gametogenesis, Gametes and Zygotes: An Ecological Perspective on Sexual Reproduction in the Algae,” British Phycol. J. 27, 233–252 (1992).

    Article  Google Scholar 

  29. D. A. Caron, “Technique for Enumeration of Heterotrophic Nanoplankton Using Epifluorescence Microscopy, and Comparison with Other Procedures,” App. Environ. Microbiol. 46, 491–498 (1983).

    Google Scholar 

  30. M. N. Clayton, “Propagules of Marine Macroalgae: Structure and Development,” Br. Phycol. J. 27, 219–232 (1992).

    Article  Google Scholar 

  31. L. Deysher and T. A. Norton, “Dispersal and Colonization in Sargassum muticum (Yendo) Fensholt,” J. Exp. Mar. Biol. Ecol. 56, 179–195 (1982).

    Article  Google Scholar 

  32. R. L. Fletcher and M. E. Callow, “The Settlement, Attachment and Establishment of Marine Algal Spores,” Br. Phycol. J. 27, 303–329 (1992).

    Article  Google Scholar 

  33. H. Hillebrand, C.-D. Durselen, D. Kirschtel, et al., “Biovolume Calculation for Pelagic and Benthic Microalgae,” J. Phycol. 35, 403–424 (1999).

    Article  Google Scholar 

  34. J. E. Hobbie, R. J. Daley, and S. Jasper, “Use of Nucleopore Filters for Counting Bacteria by Fluorescence Microscopy,” App. Environ. Microbiol. 33, 1225–1228 (1977).

    Google Scholar 

  35. A. C. Mathieson and Z. Guo, “Patterns of Fucoid Reproductive Biomass Allocation,” Br. Phycol. J. 27, 271–292 (1992).

    Article  Google Scholar 

  36. S. Menden-Deuer and E. J. Lessard, “Carbon to Volume Relationship for Dinoflagellates, Diatoms, and Other Protist Plankton,” Limnol. Oceanogr. 45, 569–579 (2000).

    Article  Google Scholar 

  37. J. C. Nejstgaard, L. J. Naustvoll, and A. F. Sazhin, “Correcting for Underestimation of Microzooplankton Grazing in Bottle Incubation Experiments with Mesozooplankton,” Mar. Ecol. Progr. Ser. 221, 59–75 (2001).

    Article  Google Scholar 

  38. T. A. Norton, “Dispersal by Macroalgae,” Br. Phycol. J. 27, 293–301 (1992).

    Article  Google Scholar 

  39. G. A. Pearson and S. H. Brawley, “Reproductive Ecology of Fucus distichus (Phaeophyceae): An Intertidal Alga with Successful External Fertilization,” Mar. Ecol. Progr. Ser. 143, 211–223 (1996).

    Article  Google Scholar 

  40. G. A. Pearson and S. H. Brawley, “A Model for Signal Transduction during Gamete Release in the Fucoid Alga Pelvetia compressa,” Plant. Physiol. 118, 305–313 (1998).

    Article  Google Scholar 

  41. G. A. Pearson, E. A. Serrão, and S. H. Brawley, “Control of Gamete Release in Fucoid Algae: Sensing Hydrodynamic Conditions via Carbon Acquisition,” Ecology 79(5), 1725–1739 (1998).

    Article  Google Scholar 

  42. B. Robertson, Reproductive Ecology and Canopy Structure of Fucus spiralis Botanica Marina (London) XXX 475–482 (1987).

    Article  Google Scholar 

  43. B. Santelices, “Recent Advances in Fertilization Ecology of Macroalgae,” J. Phycol. 38(issue 1), 4–10 (2002).

    Article  Google Scholar 

  44. D. R. Schiel, “Algal Interactions on Subtidal Reefs in Northern New Zealand: A Review,” NZ J. Mar. Freshwat. Res. 22, 481–489 (1988).

    Google Scholar 

  45. E. A. Serrão, G. Pearson, L. Kautsky, and S. H. Brawley, “Successful External Fertilization in Turbulent Environments,” Proc. Natl. Acad. Sci. USA 93, 5286–5290 (1996).

    Article  Google Scholar 

  46. S. Sutõ, “Studies on Shedding, Swimming and Fixing of the Spores of Seaweeds,” Bull. Japan Soc. Sci. Fish, No. 16, 1–9 (1950).

  47. F. W. Zechman and A. C. Mathieson, “The Distribution of Seaweed Propagules in Estuarine, Coastal and Offshore Waters of New Hampshire, U.S.A,” Botanica Marina (London) XXVIII, 283–294 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Maximova.

Additional information

Original Russian Text © O.V. Maximova, A.F. Sazhin, 2010, published in Okeanologiya, 2010, Vol. 50, No. 2, pp. 218–229.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maximova, O.V., Sazhin, A.F. The role of gametes of the macroalgae Ascophyllum nodosum (L.) Le Jolis and Fucus vesiculosus L. (Fucales, Phaeophyceae) in summer nanoplankton of the White Sea coastal waters. Oceanology 50, 198–208 (2010). https://doi.org/10.1134/S0001437010020050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437010020050

Keywords

Navigation