Skip to main content
Log in

Simulations of currents and pollution transport in the coastal waters of Big Sochi

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

We suggested a method for modelling the transport of pollutants over the Black Sea water basin adjacent to Big Sochi. The model is based on the application of the Institute of Numerical Mathematics Ocean Model (INMOM) over the entire basin of Big Sochi in two versions: M1 and M2. In the first version, we use uniform spatial resolution of the model with a step of ∼4 km; in the M2 version, the resolution is not uniform. The step decreases to 50 m in the basin of Big Sochi. The M2 version is used only in the periods when pollution transport is simulated, for which the initial hydrothermodynamic state is specified from the M1 version. Both versions reflect a complex character of Black Sea circulation; however, the M2 version more adequately reproduces the eddy circulation in its eastern part, where the horizontal resolution of the M2 version is higher. A conclusion is made on this basis that, in order to reproduce the eddy structure of the Black Sea circulation, the resolution of the model should be on the order of 1.5 km and the main factor of the formation of the quasi-stationary Batumi anticyclonic eddy is the topographic peculiarities in this part of the sea. The pollution spreading from the Sochi, Khosta, and Mzymta rivers and from 18 pipes of deep-water sewage was simulated for the flood periods from April 1, 2007, to April 30, 2007. It was shown that mesoscale eddy formations that form a complex three-dimensional structure of pollution spreading make the greatest contribution to the spread of pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. V. Grigor’ev, A. G. Zatsepin, V. A. Kubryakov, and I. V. Charikov, “Numerical simulation of the water dynamics in the Russian sector of the Black Sea-a technology and verification on the basis of real data,” in Construction of Artificial Beaches, Islands, and Other Objects in the Coastal Zones of Seas, Lakes, and Water Reservoirs, Proceedings of the 2nd Int. Conf. “Construction and Use of Artificial Coastal and Offshore Lands”, Novosibirsk, August 1–6, 2011 pp. 129–132 [in Russian].

  2. Oil Spill Accident in the Kerch Strait in November 2007, Ed. by A. N. Korshenko, Yu. Ilyin, and V. Velikova (Nauka, Moscow, 2011).

    Google Scholar 

  3. A. Korshenko, “The state of total petroleum hydrocarbons (TPHs),” in State of the Environment of the Black Sea 2001–2006/7 (Commission on the Protection of the Black Sea Against Pollution, Istanbul, 2008), pp. 113–129.

    Google Scholar 

  4. A. N. Korshenko and A. I. Panova, “Dynamics of oil pollution in the Kerch Strait after the Volgoneft-139 oil tanker disaster on November 11, 2007,” in Oceanic and Marine Research, GOIN, No. 212 (Artifeks, Obninsk, 2009), pp. 197–208 [in Russian].

    Google Scholar 

  5. V. Zalesny, N. Diansky, V. V. Fomin, and S. G. Demyshev, “Numerical model of the circulation of the Black Sea and the Sea of Azov,” Russ. J. Numer. Anal. Math. Modelling, 27(1), 95–111 (2012).

    Google Scholar 

  6. N. A. Diansky, A. V. Bagno, and V. B. Zalesny, “Sigma model of global ocean circulation and its sensitivity to variations in wind stress,” Izv., Atmos. Ocean. Phys. 38(4), 477–494 (2002).

    Google Scholar 

  7. N. A. Diansky, V. B. Zalesny, S. N. Moshonkin, and A. S. Rusakov, “High resolution modeling of the monsoon circulation in the Indian Ocean,” Oceanology 46(5), 608–628 (2006).

    Article  Google Scholar 

  8. V. B. Zalesny, G. I. Marchuk, V. I. Agoshkov, A. V. Bagno, A. V. Gusev, N. A. Diansky, S. N. Moshonkin, R. Tamsalu, and E. M. Volodin, “Numerical simulation of large-scale ocean circulation based on the multicomponent splitting method,” Russ. J. Numer. Anal. Math. Modelling 25(6), 581–609 (2010).

    Google Scholar 

  9. D. Brydon, S. San, and R. Bleck, “A new approximation of the equation of state for seawater, suitable for numerical ocean models,” J. Geophys. Res. 104(C1), 1537–1540 (1999).

    Article  Google Scholar 

  10. R. C. Pacanovsky and S. M. Griffies, The MOM 3.0 Manual (Geophysic Fluid Dynamics Laboratory, NOAA, Princeton, 2000).

    Google Scholar 

  11. R. A. Ibraev, R. N. Khabeev, and K. V. Ushakov, “Eddyresolving 1/10° model of the world ocean,” Izv., Atmos. Ocean. Phys., 48(1), 37–46 (2012).

    Article  Google Scholar 

  12. A. F. Blumberg and G. L. Mellor, “A description of a three-dimensional coastal ocean circulation model,” in Three-Dimensional Coastal Ocean Models, Coastal Estuarine Sciences, Ed. by N. S. Heaps (AGU, Washington, D.C., 1987), vol. 4, pp. 1–16.

    Chapter  Google Scholar 

  13. A. F. Shchepetkin and J. C. McWilliams, “The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model,” Ocean Modelling, 9, 347–404 (2004).

    Article  Google Scholar 

  14. V. N. Belokopytov, “Ocean station tool: software package for processing and analysis of oceanographic data,” in International Marine Data and Information Conference (IMDIC), May 31–June 3, 2005) (Brest, France, 2005), p. 67.

    Google Scholar 

  15. R. C. Pacanovsky and S. M. Griffies, The MOM 3.0 Manual (Geophysic Fluid Dynamics Laboratory, NOAA, Princeton, USA, 2000).

    Google Scholar 

  16. A. E. Gill, Atmosphere-Ocean Dynamics (Academic, New York, 1982; Moscow, Mir, 1986).

    Google Scholar 

  17. W. Large and S. Yeager, Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical Note: NCAR/TN-460+STR. (National Center for Atmospheric Research, 2004).

    Google Scholar 

  18. A. C. Lorenc, R.S. Bell, and B. MacPherson, “The Meteorological Office analysis correction data assimilation scheme,” Q. J. R. Meteorol. Soc. 117, 59–89 (1991).

    Article  Google Scholar 

  19. G. K. Korotaev, T. Oguz, V. L. Dorofeev, S. G. Demyshev, A. I. Kubryakov, and Yu. B. Ratner, “Development of Black Sea nowcasting and forecasting System,” Ocean Sci. 7, 629–649 (2011).

    Article  Google Scholar 

  20. Sh. V. Dzhaoshvili, “River runoff and sediment transport to the Black Sea,” Water Resour. 26(3), 243–250 (1999).

    Google Scholar 

  21. R. A. Ibraev, “A study of the sensitivity of the model of the Black Sea current dynamics to the surface boundary conditions,” Oceanology 41(5), 615–621 (2001).

    Google Scholar 

  22. R. A. Ibraev, Mathematical Modeling of Thermohydrodynamic Processes in the Caspian Sea (GEOS, Moscow, 2008) [in Russian].

    Google Scholar 

  23. E. V. Stanev, “Understanding Black Sea dynamics: Overview of recent numerical modeling,” Oceanogr. 18(2), 56–75 (2005). http://dx.doi.org/10.5670/oceanog.2005.42

    Article  Google Scholar 

  24. G. Korotaev, T. Oguz, A. Nikiforov, and C. Koblinsky, “Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data,” J. Geophys. Res. 108(C4), 3122 (2003). doi 10.10.1029/2002JC001508

    Article  Google Scholar 

  25. A. A. Kordzadze and D. I. Demetrashvili, “Prediction and intra-annual variability of hydrophysical fields in the southeastern part of the Black Sea,” Izv., Atmos. Ocean. Phys. [in press].

  26. N. A. Dianskii, A. V. Gusev, and V. V. Fomin, “The specific features of pollution spread in the Northwest Pacific Ocean,” Izv., Atmos. Ocean. Phys. 48(2), 222–240 (2012).

    Article  Google Scholar 

  27. Marchuk, G.I., Methods of Computational Mathematics (Nauka, Moscow, 1989) [In Russian].

    Google Scholar 

  28. A. G. Zatsepin, V. I. Baranov, A. A. Kondrashov, A. O. Korzh, V. V. Kremenetskiy, A. G. Ostrovskii, and D. M. Soloviev, “Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation,” Oceanology 51(4), 554–568 (2011).

    Article  Google Scholar 

  29. A. Kubryakov, G. Korotaev, Yu. Ratner, A. Grigoriev, A. Kordzadze, S. Stefanescu, N. Valchev, and R. Matescu, “The Black Sea nearshore regions forecasting system: operational implementation,” in Coastal to Global Operational Oceanography: Achievements and Challenges. Proceedings of the Fifth International Conference on EuroGOOS, May 20–22, 2008, Exeter, UK, Ed. by H. Dahlin, M. J. Bell, N. C. Flemming, and S. E. Petersson (Exeter, 2008), pp. 293–296.

    Google Scholar 

  30. V. L. Dorofeev, S. G. Demyshev, and G. K. Korotaev, “Eddy-resolving model of the Black Sea circulation,” in Ecological Safety of Coastal and Shelf Areas and Integrated Use of Shelf Resouces (EKOSI-Gidrofizika, Sevastopol, 2001), pp. 73–82 [in Russian].

    Google Scholar 

  31. N. A. Diansky, “Dynamical characteristics of freshwater plume in the equatorial Atlantic,” Tr. Gos. Okeanogr. Inst., No. 197, 96–104 (1991).

    Google Scholar 

  32. M. V. Anisimov and N. A. Diansky, “Physical mechanism of the westward drift of the frontal current rings in the ocean,” Oceanology 48(3), 299–305 (2008).

    Article  Google Scholar 

  33. R. D. Kos’yan, I. S. Podymov, and N. V. Pykhov, Dynamical Processes in the Coastal Sea Area (Nauchnyi mir, Moscow, 2003) [in Russian].

    Google Scholar 

  34. W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, A description of the advanced research WRF, version 3. NCAR Technical Note NCAR/TN-475+STR (NCAR, Boulder, Colorado, 2008).

    Google Scholar 

  35. A. N. Korshenko, I. G. Matveichuk, T. I. Plotnikova, V. S. Kir’yanov, A. N. Krutov, V. V. Kochetkov, Kachestvo morskikh vod po gidrokhimicheskim pokazatelyam. Ezhegodnik 2009. (Artifeks, Obninsk, 2010) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Diansky.

Additional information

Original Russian Text © N.A. Diansky, V.V. Fomin, N.V. Zhokhova, A.N. Korshenko, 2013, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2013, Vol. 49, No. 6, pp. 664–675.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diansky, N.A., Fomin, V.V., Zhokhova, N.V. et al. Simulations of currents and pollution transport in the coastal waters of Big Sochi. Izv. Atmos. Ocean. Phys. 49, 611–621 (2013). https://doi.org/10.1134/S0001433813060042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433813060042

Keywords

Navigation