Skip to main content
Log in

Determination of stratospheric aerosol parameters from two-wavelength lidar sensing data

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

We calculate the microphysical characteristics of stratospheric aerosol from lidar-sensing data at wavelengths of 355 and 532 nm using a priori information about the aerosol spectra obtained from balloon and aircraft measurement data. We analyze the mode structure of the spectra and its coupling with the integral microphysical characteristics of aerosol. For most implementations, it was shown that two aerosol modes (of background and volcanic natures) make commensurate contributions to integral aerosol characteristics, which makes it difficult to use the traditional method of model estimates. It is more efficient to use an optical model of a statistical character that is based on approximation dependences between the required integral aerosol characteristics and lidar-measured optical characteristics. We found that the area, volume, and effective size of particles and the lidar ratio at a wavelength of 355 nm correlated with the absolute values of backscattering coefficients at wavelengths of 355 or 532 nm and the lidar ratio at the wavelength of 532 nm correlated with the ratio of backscattering coefficients at these wavelengths. We estimate the error in the determination of integral characteristics of aerosol using the model developed. The model efficiency is demonstrated on real data of stratospheric aerosol lidar sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Zuev, Lidar Control of the Stratosphere (Nauka, Novosibirsk, 2004) [in Russian].

    Google Scholar 

  2. R. L. McKenzie, J. M. Rosen, N. T. Kjome, et al., “Multi-Wavelength Profiles of Aerosol Backscatter Over Lauder, New Zealand, 24 November 1992,” Geophys. Res. Lett. 21(9), 789–792 (1994).

    Article  Google Scholar 

  3. P. Di Girolamo, R. V. Gagliardi, G. Pappalardo, et al., “Two Wavelength Lidar Analysis of Stratospheric Aerosol Size Distribution,” J. Aerosol Sci. 26(6), 989–1001 (1995).

    Article  Google Scholar 

  4. G. Beyerle, R. Neuber, O. Schrems, et al., “Multiwavelength Lidar Measurements of Stratospheric Aerosols above Spitsbergen during Winter 1992/93,” Geophys. Res. Lett. 21(1), 57–60 (1994).

    Article  Google Scholar 

  5. V. D. Burlakov, S. I. Dolgii, V. V. Zuev, et al., “Measurements of Microstructure Characteristics of Background and Volcanic Stratospheric Aerosol Based on Multi-Frequency Laser Sounding in Tomsk (56.5° N; 85.0° E),” Opt. Atmos. Okeana 23(9), 803–810 (2010).

    Google Scholar 

  6. U. Wandinger, A. Ansmann, J. Reichardt, et al., “Determination of Stratospheric-Aerosol Microphysical Properties from Independent Extinction and Back-scattering Measurements with a Raman Lidar,” Appl. Opt. 34(36), 8315–8329 (1995).

    Article  Google Scholar 

  7. A. Ansmann, I. Mattis, U. Wandinger, et al., “Evolution of the Pinatubo Aerosol: Raman Lidar Observations of Particle Optical Depth, Effective Radius, Mass, and Surface Area over Central Europe at 53.48° N,” J. Atmos. Sci. 54, 2630–2641 (1997).

    Article  Google Scholar 

  8. M. Hirono, N. Fujivara, M. Fujivara, et al., “Comparative Study of the Aerosol Properties Measured by Two-Wavelength Lidar and Detector on Balloon,” J. Meteorol. Soc. Jpn. 63(2), 294–302 (1985).

    Google Scholar 

  9. M. del Guasta, M. Morandi, L. Stefanutti, et al., “Derivation of Mount Pinatubo Stratospheric Aerosol Mean Size Distribution by Means of a Multiwavelength Lidar,” Appl. Opt. 33(24), 5690–5697 (1994).

    Article  Google Scholar 

  10. H. Jäger and D. Hofmann, “Midlatitude Lidar Backscatter to Mass, Area, and Extinction Conversion Model Based on in situ Aerosol Measurements from 1980 to 1987,” Appl. Opt. 30, 127–138 (1991).

    Article  Google Scholar 

  11. T. Deshler, M. E. Hervig, D. J. Hofmann, et al., “Thirty Years of in situ Stratospheric Aerosol Size Distribution Measurements from Laramie, Wyoming (41° N), Using Balloon-Borne Instruments,” J. Geophys. Res. 108(D55) (2003). doi 10.1029/2002JD002514

    Google Scholar 

  12. R. F. Pueschel, P. B. Russel, D. A. Allen, et al., “Physical and Optical Properties of the Pinatubo Volcanic Aerosol: Aircraft Observations with Impactors and a Sun-Tracking Photometer,” J. Geophys. Res. 99(D6), 12915–12922 (1994).

    Article  Google Scholar 

  13. J. Goodman, K. G. Snetsinger, R. F. Pueschel, et al., “Evolution of Pinatubo Aerosol near 19 km Altitude over Western North America,” Geophys. Res. Lett. 21(12), 1129–1132 (1994).

    Article  Google Scholar 

  14. V. A. Korshunov, “Retrieval of Integral Parameters of Tropospheric Aerosol from Two-Wavelength Lidar Sounding,” Izv., Atmos. Ocean. Phys. 43(5), 618–633 (2007).

    Article  Google Scholar 

  15. S. A. Lysenko and M. M. Kugeiko, “Retrieval of Optical and Microphysical Characteristics of Postvolcanic Stratospheric Aerosol from the Results of Three-Frequency Lidar Sensing,” Atmos. Oceanic Opt. 24(5), 466–477 (2011).

    Article  Google Scholar 

  16. V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  17. Ya. A. Virolainen, Yu. M. Timofeev, A. V. Polyakov, et al., “Analysis of Solutions to the Inverse Problem on the Retrieval of the Microstructure of Stratospheric Aerosol from Satellite Measurements,” Izv., Atmos. Ocean. Phys. 42(6), 752–764 (2006).

    Article  Google Scholar 

  18. R. F. Pueschel, “Stratospheric Aerosols: Formation, Properties, Effects,” J. Aerosol Sci. 27(3), 383–402 (1996).

    Article  Google Scholar 

  19. T. Deshler, “A Review of Global Stratospheric Aerosol: Measurements, Importance, Life Cycle, and Local Stratospheric Aerosol,” Atmos. Res. 90, 223–232 (2008).

    Article  Google Scholar 

  20. P. J. Sheridan, R. C. Schnell, D. J. Hofmann, et al., “Electron Microscope Studies of Mt. Pinatubo Aerosol Layers over Laramie, Wyoming during Summer 1991,” Geophys. Res. Lett. 19(2), 203–206 (1992). doi 10.1029/91GL02789

    Article  Google Scholar 

  21. P. J. Sheridan, C. A. Brock, and J. C. Wilson, “Aerosol Particles in the Upper Troposphere and Lower Stratosphere: Elemental Composition and Morphology of Individual Particles in Northern Midlatitudes,” Geophys. Res. Lett. 21(23), 2587–2590 (1994).

    Article  Google Scholar 

  22. D. M. Murphy, D. S. Thomson, and M. J. Mahoney, “In situ Measurements of Organics, Meteoritic Material, Mercury, and Other Elements in Aerosols at 5 to 19 Kilometers,” Science 282, 1664–1669 (1998). doi 10.1126/science.282.5394.1664

    Article  Google Scholar 

  23. M. Gerding, G. Baumgarten, U. Blum, et al., “Observation of an Unusual Mid-Stratospheric Aerosol Layer in the Arctic: Possible Sources and Implications for Polar Vortex Dynamics,” Ann. Geophys. 21, 1057–1069 (2003).

    Article  Google Scholar 

  24. M. Fromm, A. Jerome, K. Hoppel, et al., “Observations of Boreal Forest Fire Smoke in the Stratosphere by POAM III, SAGE II, and Lidar in 1998,” Geophys. Res. Lett. 27(9), 1407–1710 (2000). doi 10.1029/1999GL011200

    Article  Google Scholar 

  25. Assessment of Stratospheric Aerosol Properties (ASAP), SPARC Rep. No. 4 (SPARC, 2006).

    Google Scholar 

  26. D. Hanson and K. Mauersberger, “Laboratory Studies of the Nitric Acid Trihydrate: Implications for the South Polar Stratosphere,” Geophys. Res. Lett. 15(8), 855–858 (1988). doi 10.1029/GL015i008p00855

    Article  Google Scholar 

  27. R. Zhang, P. J. Wooldridge, J. P. D. Abbatt, et al., “Physical Chemistry of the Sulfuric Acid/Water Binary System at Low Temperatures: Stratospheric Implications,” J. Phys. Chem. 97, 7351–7358 (1993). doi 10.1021/j1001130a038

    Article  Google Scholar 

  28. G. Beyerle, H. Deckelmann, R. Neuber, et al., “Occurrence of Solid Particles in the Winter Polar Stratosphere Above the Nitric Acid Trihydrate Coexistence Temperature Inferred from Ground-Based Polarization Lidar Observations at Ny-Ålesund, Spitsbergen,” J. Geophys. Res. 106, 2979–2992 (2001). doi 10.1029/2000JD900569

    Article  Google Scholar 

  29. T. Nagai, O. Uchino, T. Itabe, et al., “Polar Stratospheric Clouds Observed at Eureka (80° N, 86° W) in the Canadian Arctic during the 1994/1995 Winter,” Geophys. Res. Lett. 24(17), 2243–2246 (1997). doi 10.1029/97GL02094

    Article  Google Scholar 

  30. N. Larsen, J. M. Rosen, N. T. Kjome, et al., “Deliquescence and Freezing of Stratospheric Aerosol Observed by Balloonborne Backscattersondes,” Geophys. Res. Lett. 22(10), 1233–1236 (1995). doi 10.1029/95GL00637

    Article  Google Scholar 

  31. Ya. A. Virolainen, Yu. M. Timofeev, H. Steele, et al., “Modeling of Polyar Stratospheric Clouds: I. Microphysical Characteristics,” Opt. Atmos. Okeana 18(3), 264–269 (2005).

    Google Scholar 

  32. T. Deshler and S. J. Oltmans, “Vertical Profiles of Volcanic Aerosol and Polar Stratospheric Clouds above Kiruna, Sweden: Winters 1993 and 1995,” J. Atmos. Chem. 30, 11–23 (1998).

    Article  Google Scholar 

  33. P. Hamill, E. J. Jensen, P. B. Russell, et al., “The Life Cycle of Stratospheric Aerosol Particles,” Bull. Am. Meteorol. Soc. 78(7), 1395–1410 (1997).

    Article  Google Scholar 

  34. T. Deshler, B. J. Johnson, and W. R. Rozier, “Balloonborne Measurements of Pinatubo Aerosol during 1991 and 1992 at 41° N, Vertical Profiles, Size Distribution, and Volatility,” Geophys. Res. Lett. 20, 1435–1438 (1993).

    Article  Google Scholar 

  35. A. S. Koziol and J. Pudykiewicz, “High-Resolution Modeling of Size-Resolved Stratospheric Aerosol,” J. Atmos. Sci. 55(20), 3127–3147 (1998).

    Article  Google Scholar 

  36. P. B. Russell and P. Hamill, “Spatial Variation of Stratospheric Aerosol Acidity and Model Refractive Index: Implications of Recent Results,” J. Atmos. Sci. 41, 781–1790 (1984).

    Google Scholar 

  37. V. E. Ivanov, M. B. Fridzon, and S. P. Essyak, Radiosounding of the Atmosphere (URO RAN, Ekaterinburg, 2004).

    Google Scholar 

  38. A. Kats, M. Khaykin, and D. Shifrin, “A Platform for Radiosonde Temperature Sensors Compatibility Tests Using Stratospheric Balloon Flights and First Flight Results,” WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation (TECO-2010), Helsinki, Finland, August 30–September 1, 2010, Rep. P3(9).

  39. V. V. Zuev and V. D. Burlakov, Siberian Lidar Station: 20-Year Optical Monitoring of the Stratosphere (IOA SO RAN, Tomsk, 2008) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Korshunov.

Additional information

Original Russian Text © V.A. Korshunov, D.S. Zubachev, 2013, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2013, Vol. 49, No. 2, pp. 196–207.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korshunov, V.A., Zubachev, D.S. Determination of stratospheric aerosol parameters from two-wavelength lidar sensing data. Izv. Atmos. Ocean. Phys. 49, 176–186 (2013). https://doi.org/10.1134/S0001433813020114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433813020114

Keywords

Navigation