Skip to main content
Log in

Estimates of the sensitivity of cyclonic activity in the troposphere of extratropical latitudes to changes in the temperature regime

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Quantitative estimates of the sensitivity of the number and size of extratropical cyclones in the Northern Hemisphere to changes in the surface temperature are obtained with the use of NCEP/NCAR reanalysis data over a 60-year period and are compared with estimates on the basis of a relatively simple model of the cyclonic and anticyclonic activities in the atmosphere of extratropical latitudes associated with characteristics of atmospheric temperature stratification (MMPKh model). The model estimates are also obtained for a dry and moist atmosphere. With the use of the reanalysis data, extratropical latitudes are, on the whole, characterized by a general decrease in the number of cyclones and the density of their packing in extratropical latitudes as the surface temperature increases. However, in the MMPKh model for moist atmosphere, estimates of the parameter of sensitivity of the number of cyclones at midlatitudes and at extratropical latitudes in the Northern Hemisphere as a whole are close to those based on the reanalysis data. The influences of the meridional gradient of the surface temperature and the vertical temperature gradient in the troposphere on changes in the number and size of extratropical cyclones are estimated from the reanalysis data and model calculations. It is noted that the most significant changes in annual mean variations in the number and size of extratropical cyclones are associated with the vertical temperature gradient in the troposphere. In this case, an increase in the vertical temperature gradient in the troposphere decreases the size of cyclones. The relative influences of the vertical and meridional temperature gradients are different for different latitudinal zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Climate Change 2007: The Physical Science Basis—Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor and H. Miller (Cambridge University Press, Cambridge, 2007), pp. 131–234.

    Google Scholar 

  2. I. I. Mokhov, O. I. Mokhov, B. K. Petukhov, et al., “Influence of Global Climate Changes on the Vortex Activity of the Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 28(1), 11–26 (1992).

    Google Scholar 

  3. I. I. Mokhov, O. I. Mokhov, B. K. Petukhov, et al., “On the Cloudiness Impact on Vortex Activity of the Atmosphere under Climate Changes,” Meteorol. Gidrol., No. 1, 5–11 (1992).

    Google Scholar 

  4. I. I. Mokhov, V. M. Gryanik, T. N. Doronina, et al., Vortex Activity of the Atmosphere: Variation Tendencies. Preprint No. 2 (Inst. Atmos. Phys., RAS, Moscow, 1993) [in Russian].

    Google Scholar 

  5. V. M. Gryanik, T. N. Doronina, I. I. Mokhov, et al., “Tendencies of Variation in the Scales of Vortex Structures in the Atmosphere in Relation to Climate Changes,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 29(5), 596–607 (1993).

    Google Scholar 

  6. I. I. Mokhov, T. N. Doronina, V. M. Gryanik, et al., “Extratropical Cyclones and Anticyclones: Tendencies of Change,” in The Life Cycles of Extratropical Cyclones, Vol. 2, Ed. by S. Gronas and M. A. Shapiro (Geophys. Inst., Univ. of Bergen, Bergen, 1994), pp. 56–60.

    Google Scholar 

  7. I. I. Mokhov and M. G. Akperov, “Tropospheric Lapse Rate and Its Relation to Surface Temperature from Reanalysis Data,” Izv., Atmos. Ocean. Phys. 42(4), 430–438 (2006).

    Article  Google Scholar 

  8. M. G. Akperov, M. Yu. Bardin, E. M. Volodin, et al., “Probability Distributions for Cyclones and Anticyclones from the NCEP/NCAR Reanalysis Data and the INM RAS Climate Model,” Izv., Atmos. Ocean. Phys. 43(6), 705–712 (2007).

    Article  Google Scholar 

  9. G. S. Golitsyn, I. I. Mokhov, M. G. Akperov, et al., “Distribution Functions of Probabilities of Cyclones and Anticyclones from 1952 to 2000: An Instrument for the Determination of Global Climate Variations,” Dokl Earth Sci. 413(2), 324–326 (2007).

    Article  Google Scholar 

  10. M. G. Akperov and I. I. Mokhov, “A Comparative Analysis of the Method of Extratropical Cyclone Identification,” Izv., Atmos. Ocean. Phys. 46(5), 574–590 (2010).

    Article  Google Scholar 

  11. S. J. Lambert, “The Effect of Enhanced Greenhouse Warming on Winter Cyclone Frequencies and Strengths,” J. Clim. 8(5), 1447–1452 (1995).

    Article  Google Scholar 

  12. M. Yu. Bardin, “Main Modes of Variability of Winter Cyclone Frequencies in the Atlantic,” Meteorol. Gidrol., No. 1, 42–52 (2000).

    Google Scholar 

  13. M. Yu. Bardin and A. B. Polonskii, “North Atlantic Oscillation and Synoptic Variability in the European-Atlantic Region in Winter,” Izv., Atmos. Ocean. Phys. 41(2), 127–136 (2005).

    Google Scholar 

  14. S. K. Gulev and S. Grigoriev, “Extratropical Cyclone Variability in the Northern Hemisphere Winter from the NCEP/NCAR Reanalysis Data,” Clim. Dyn. 17(10), 795–809 (2001).

    Article  Google Scholar 

  15. M. C. Serreze, “Climatological Aspects of Cyclone Development and Decay in the Arctic,” Atmos.-Ocean 33, 1–23 (1995).

    Article  Google Scholar 

  16. R. J. Murray and I. Simmonds, “A Numerical Scheme for Tracking Cyclone Centres from Digital Data, Part I: Development and Operation of the Scheme,” Aust. Meteorol. Mag. 39, 155–166 (1991).

    Google Scholar 

  17. M. R. Sinclair, “An Objective Cyclone Climatology for the Southern Hemisphere,” Mon. Wea. Rev. 122(10), 2239–2256 (1994).

    Article  Google Scholar 

  18. R. Blender and M. Schubert, “Cyclone Tracking in Different Spatial and Temporal Resolutions,” Mon. Wea. Rev., 128, 377–384 (2000).

    Article  Google Scholar 

  19. V. E. Lagun and A. I. Yazev, “Global Distribution and Temporal Variation in Parameters of Cyclonic Disturbances in the Atmosphere,” Dokl. Akad. Nauk 334(5), 642–645 (1994).

    Google Scholar 

  20. C. C. Raible, P. M. Della-Marta, C. Schwierz, et al., “Northern Hemisphere Extratropical Cyclones: A Comparison of Detection and Tracking Methods and Different Reanalyses,” Mon. Wea. Rev. 136(3), 880–897 (2008).

    Article  Google Scholar 

  21. R. Kistler, E. Kalnay, W. Collins, et al., “The NCEP 50-Year Reanalysis: Monthly Means CD-ROM and Documentation,” Bull. Am. Meteorol. Soc. 82(2), 247–267 (2001).

    Article  Google Scholar 

  22. N. A. Phillips, “Energy Transformations and Meridional Circulations Associated with Simple Baroclinic Waves in a Two-Level Quasigeostrophic Systems,” Tellus 6, 273–286 (1954).

    Article  Google Scholar 

  23. V. P. Dymnikov, “On the Evolution of Baroclinic Instability in the Atmosphere with a Variable Parameter of Statistical Stability,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 14(5), 493–500 (1978).

    Google Scholar 

  24. M. Mak, “On Moist Quasi-Geostrophic Baroclinic Instability,” J. Atmos. Sci. 39, 2028–2037 (1982).

    Article  Google Scholar 

  25. M. Mak, “Cyclogenesis in a Conditionally Unstable Moist Baroclinic Atmosphere,” Tellus. 46A(1), 14–33 (1994).

    Google Scholar 

  26. I. I. Mokhov, “Vertical Temperature Gradient in the Troposphere and Its Relation to Near-Surface Temperature by Empirical Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 19(9), 913–919 (1983).

    Google Scholar 

  27. S. K. Gulev, I. I. Zveryaev, and I. I. Mokhov, “Vertical Temperature Gradient in the Troposphere Depending on Near-Surface Temperature Regime,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 27(4), 419–430 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Akperov.

Additional information

Original Russian Text © M.G. Akperov, I.I. Mokhov, 2013, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2013, Vol. 49, No. 2, pp. 129–136.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akperov, M.G., Mokhov, I.I. Estimates of the sensitivity of cyclonic activity in the troposphere of extratropical latitudes to changes in the temperature regime. Izv. Atmos. Ocean. Phys. 49, 113–120 (2013). https://doi.org/10.1134/S0001433813020035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433813020035

Keywords

Navigation