Skip to main content
Log in

Integral intensities of absorption bands of silicon tetrafluoride in the gas phase and cryogenic solutions: Experiment and calculation

  • Molecular Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The spectral characteristics of the SiF4 molecule in the range 3100–700 cm−1, including the absorption range of the band ν3, are studied in the gas phase at P = 0.4–7 bar and in solutions in liquefied Ar and Kr. In the cryogenic solutions, the relative intensities of the vibrational bands, including the bands of the isotopically substituted molecules, are determined. The absorption coefficients of the combination bands 2ν3, ν3 + ν1, ν3 + ν4, and 3ν4 are measured in the solution in Kr. In the gas phase of the one-component system at an elevated pressure of SiF4, the integrated absorption coefficient of the absorption band ν3 of the 28SiF4 molecule was measured to be A3) = 700 ± 30 km/mol. Within the limits of experimental error, this absorption coefficient is consistent with estimates obtained from independent measurements and virtually coincides with the coefficient A3) = 691 km/mol calculated in this study by the quantum-chemical method MP2(full) with the basis set cc-pVQZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. D. Bulanov, G. G. Devyatych, A. V. Gusev, et al., Cryst. Res. Technol. 35, 1023 (2000).

    Article  Google Scholar 

  2. G. G. Devyatykh, A. D. Bulanov, A. V. Gusev, et al., Dokl. Akad. Nauk 376, 492 (2001).

    Google Scholar 

  3. T. E. Graedel, D. T. Hawkins, and L. D. Claxton, Atmospheric Chemical Compounds. Sources, Occurrence, and Bioassay (Academic, Orlando, 1986).

    Google Scholar 

  4. L. Balabaeva and G. Petrova, Khing. Zdraueopaz. 15, 162 (1972).

    Google Scholar 

  5. A. E. Guber and U. Köhler, J. Mol. Struct. 348, 209 (1995).

    Article  Google Scholar 

  6. S. K. Ignatov, P. G. Sennikov, L. A. Chuprov, and A. G. Razuvaev, Izv. Ross. Akad. Nauk, Ser. Khim., No. 4, 797 (2003).

  7. B. S. Ault, J. Am. Chem. Soc. 105, 5742 (1983).

    Article  Google Scholar 

  8. M. Snels and J. Reuss, Chem. Phys. Lett. 140, 5742 (1987).

    Article  Google Scholar 

  9. J. W. I. Bladel and A. J. Avoird, Chem. Phys. 92, 2837 (1990).

    ADS  Google Scholar 

  10. R.-D. Urban and M. Takami, J. Chem. Phys. 102, 3017 (1995).

    Article  ADS  Google Scholar 

  11. P. N. Schatz and D. F. Hornig, J. Chem. Phys. 21, 1516 (1953).

    Article  Google Scholar 

  12. C. W. Patterson, R. S. McDowell, N. G. Nereson, et al., J. Mol. Spectrosc. 91, 416 (1982).

    Article  ADS  Google Scholar 

  13. A. P. Burtsev, I. M. Kislyakov, and T. D. Kolomiitsova, Proc. SPIE 4063, 224 (2000).

    ADS  Google Scholar 

  14. Advances in Spectroscopy, Vol. 23: Molecular Cryospectroscopy, Ed. by R. J. H. Clark and R. E. Hester (Wiley, Chichester, 1995).

    Google Scholar 

  15. C. W. Patterson and A. S. Pine, J. Mol. Spectrosc. 96, 404 (1982).

    Article  ADS  Google Scholar 

  16. R. P. Young and R. N. Jones, Chem. Rev. 71, 219 (1971).

    Article  Google Scholar 

  17. A. G. Morachevskii and I. B. Sladkov, Physicochemical Properties of Molecular Inorganic Compounds (Khimiya, St. Petersburg, 1996) [in Russian].

    Google Scholar 

  18. S. K. Ignatov, P. G. Sennikov, A. G. Razuvaev, et al., Opt. Spektrosk. 90, 732 (2001) [Opt. Spectrosc. 90, 654 (2001)].

    Google Scholar 

  19. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 98, Revision A.3 (Gaussian, Pittsburgh, 1998).

    Google Scholar 

  20. R. S. McDowell, M. J. Reisfeld, C. W. Patterson, et al., J. Chem. Phys. 77, 4337 (1982).

    ADS  Google Scholar 

  21. T. D. Kolomiitsova, S. M. Melikova, and G. P. Miroshnichenko, Opt. Spektrosk. 59, 1226 (1985).

    Google Scholar 

  22. W. D. Reents, Jr., D. L. Wood, and A. M. Mujsce, Anal. Chem. 57, 104 (1985).

    Article  Google Scholar 

  23. T. D. Kolomiitsova and D. N. Shchepkin, Opt. Spektrosk. 66, 1032 (1989) [Opt. Spectrosc. 66, 603 (1989)].

    Google Scholar 

  24. C. Haas and D. F. Hornig, J. Chem. Phys. 26, 707 (1957).

    Article  Google Scholar 

  25. M. Gilbert and M. Drifford, J. Chem. Phys. 66, 3205 (1977).

    Article  ADS  Google Scholar 

  26. E. R. Bernstein and G. R. Meredith, J. Chem. Phys. 67, 4132 (1977).

    ADS  Google Scholar 

  27. F. Bessette, A. Cabana, R. P. Fourmier, and R. Savoie, Can. J. Chem. 48, 410 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Optika i Spektroskopiya, Vol. 98, No. 2, 2005, pp. 261–268.

Original Russian Text Copyright © 2005 by Burtsev, Bocharov, Ignatov, Kolomiitsova, Sennikov, Tokhadze, Chuprov, Shchepkin, Schrems.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burtsev, A.P., Bocharov, V.N., Ignatov, S.K. et al. Integral intensities of absorption bands of silicon tetrafluoride in the gas phase and cryogenic solutions: Experiment and calculation. Opt. Spectrosc. 98, 227–234 (2005). https://doi.org/10.1134/1.1870065

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1870065

Keywords

Navigation