Skip to main content
Log in

Response of the electrical resistivity and magnetoresistance of La0.67Ca0.33MnO3 films to biaxial tensile strains

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structure, electrical resistivity, and magnetoresistance of (50-nm)La0.67Ca0.33MnO3 epitaxial films grown on a [(80 nm)Ba0.25Sr0.75TiO3/La0.3Sr0.7Al0.65Ta0.35O3] substrate with a substantial positive lattice misfit have been studied. The tensile biaxial strains are shown to account for the increase in the cell volume and in the relative concentration of Mn+3 ions in the manganite films as compared to those for the original material (33%). The peak in the temperature dependence of the resistivity ρ of La0.67Ca0.33MnO3 films was shifted by 30–35 K toward lower temperatures relative to its position in the ρ(T) graph for a manganite film grown on (001)La0.3Sr0.7Al0.65Ta0.35O3. For T < 150 K, the temperature dependences of ρ of La0.67Ca0.33MnO3/Ba0.25Sr0.75TiO3/La0.3Sr0.7Al0.65Ta0.35O3 films could be well fitted by the relation ρ = ρ0 + ρ1 T 4.5, where ρ0 = 0.35 mΩ cm and the coefficient ρ1 decreases linearly with increasing magnetic field. In the temperature interval 4.2–300 K, the magnetoresistance of manganite films was within the interval 15–95% (μ0 H = 5 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Tokura, in Colossal Magnetoresistive Oxides, Ed. by Y. Tokura (Gordon and Breach, Amsterdam, 2000), p. 2.

    Google Scholar 

  2. S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’Sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Yu. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, J. Appl. Phys. 85(8), 5828 (1999).

    Article  ADS  Google Scholar 

  3. A. Goyal, M. Rajeswari, R. Shreekala, S. E. Lofland, S. M. Bhagat, T. Boettcher, C. Kwon, R. Ramesh, and T. Venkatesan, Appl. Phys. Lett. 71(17), 2535 (1997).

    Article  ADS  Google Scholar 

  4. V. V. Srinivasu, S. E. Lofland, S. M. Bhagat, K. Ghosh, and S. D. Tyagi, J. Appl. Phys. 86(2), 1067 (1999).

    Article  ADS  Google Scholar 

  5. Yu. A. Boikov, T. Claeson, and A. Yu. Boikov, Zh. Tekh. Fiz. 71(10), 54 (2001) [Tech. Phys. 46, 1260 (2001)].

    Google Scholar 

  6. Yu. A. Boikov, V. A. Danilov, and A. Yu. Boikov, Fiz. Tverd. Tela (St. Petersburg) 45(4), 649 (2003) [Phys. Solid State 45, 681 (2003)].

    Google Scholar 

  7. Yu. A. Boikov and T. Claeson, Physica B (Amsterdam) 311(3–4), 250 (2002).

    ADS  Google Scholar 

  8. C. J. Lu, Z. L. Wang, C. Kwon, and Q. X. Jia, J. Appl. Phys. 88(7), 4032 (2000).

    Article  ADS  Google Scholar 

  9. K. H. Kim, J. Y. Gu, H. S. Choi, G. W. Parjk, T. W. Park, and T. W. Noh, Phys. Rev. Lett. 77(9), 1877 (1996).

    Article  ADS  Google Scholar 

  10. T. I. Kamins, J. Appl. Phys. 42(9), 4357 (1971).

    Google Scholar 

  11. A. von Hippel, Rev. Mod. Phys. 22(3), 221 (1950).

    ADS  Google Scholar 

  12. Yu. A. Boikov, T. Claeson, and A. Yu. Boikov, Fiz. Tverd. Tela (St. Petersburg) 45(6), 1040 (2003) [Phys. Solid State 45, 1090 (2003)].

    Google Scholar 

  13. E. D. Specht, T. E. Clausing, and L. Heatherly, J. Mater. Res. 5(11), 2351 (1990).

    ADS  Google Scholar 

  14. G. J. Snyder, R. Hiskes, S. DiCarolis, M. R. Beasley, and T. H. Geballe, Phys. Rev. B 53(21), 14 434 (1996).

    Google Scholar 

  15. P. Shieffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. 75(18), 3336 (1995).

    ADS  Google Scholar 

  16. L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev. B 54(22), R15622 (1996).

  17. B. Raquet, M. Viret, J. M. Broto, E. Sondergard, O. Cespedes, and R. Many, J. Appl. Phys. 91(10), 8129 (2002).

    Article  ADS  Google Scholar 

  18. Y.-A. Soh, G. Aeppli, N. D. Mathur, and M. G. Blamire, J. Appl. Phys. 87(9), 6743 (2000).

    Article  ADS  Google Scholar 

  19. K. Kubo and N. Ohata, J. Phys. Soc. Jpn. 33(1), 21 (1972).

    Google Scholar 

  20. M. Jaine, M. B. Salamon, M. Rubinstein, R. E. Treece, J. S. Horwitz, and D. B. Chrisey, Phys. Rev. B 54(17), 11 914 (1996).

    Google Scholar 

  21. G. Zhao, Y. S. Wang, D. J. Kang, W. Prellier, M. Rajeswari, H. Keller, T. Venkatesan, C. W. Chu, and R. L. Creene, Phys. Rev. B 62(18), 11949 (2000).

    Google Scholar 

  22. P. J. Radaelli, M. Marezio, H. Y. Hwang, S.-W. Cheomg, and B. Batlogg, Phys. Rev. B 54(13), 8992 (1996).

    Article  ADS  Google Scholar 

  23. R. Mahesh, R. Mahendiran, A. K. Raychaudhuri, and C. N. R. Rao, Appl. Phys. Lett. 68(16), 2291 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 2, 2005, pp. 274–280.

Original Russian Text Copyright © 2005 by Bo\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\)kov, Claeson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boikov, Y.A., Claeson, T. Response of the electrical resistivity and magnetoresistance of La0.67Ca0.33MnO3 films to biaxial tensile strains. Phys. Solid State 47, 287–292 (2005). https://doi.org/10.1134/1.1866408

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1866408

Keywords

Navigation