Skip to main content
Log in

Peculiarities of the magnetic state in the system La0.70Sr0.30MnO3−γ (0 ≤ γ ≤ 0.25)

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The results of experimental investigation of the chemical phase composition, crystal structure, and magnetic properties of the manganite La0.70Sr0.30MnO3−γ (0 ≤ γ ≤ 0.25) with perovskite structure depending on the concentration of oxygen vacancies are presented. It is found that the mean grain size of the stoichiometric solid solution of La0.70Sr0.30MnO3 amounts approximately to 10 μm, while the grain size for anion-deficient solid solutions of La0.70Sr0.30MnO3−γ is approximately 5 μm. It is found that samples with 0 ≤ γ ≤ 0.13 have a rhombohedral unit cell (with space group \(R\bar 3c\), Z = 2), while samples with γ ≥ 0.20 have a tetragonal unit cell (space group I4/mcm, Z = 2). It is proved experimentally that the magnetic phase state of the manganite La0.70Sr0.30MnO3−γ changes upon a decrease in the oxygen content. It is shown that anion-deficient solid solutions of La0.70Sr0.30MnO3−γ experience a number of successive magnetic phase transformations in the ground state from a ferromagnet (0 ≤ γ ≤ 0.05) to a charge-disordered antiferromagnet (γ = 0.25) via an inhomogeneous magnetic state similar to a cluster spin glass (0.13 ≤ γ ≤ 0.20). The mean size of ferromagnetic clusters (r ≈ 50 nm) in the spin glass state is estimated. It is shown that oxygen vacancies make a substantial contribution to the formation of magnetic properties of manganites. The generalized magnetic characteristics are presented in the form of concentration dependences of the spontaneous magnetic moment, coercive force, and the critical temperature of the magnetic transition. The most probable mechanism of formation of the magnetic phase state in Sr-substituted anion-deficient manganites is considered. It is assumed that in the absence of orbital ordering, a decrease in the magnetic ion coordination number leads to sign reversal in indirect superexchange interactions Mn3+-O-Mn3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Chabara, T. Ohno, M. Kasai, and Y. Kozono, Appl. Phys. Lett. 63, 1990 (1993).

    ADS  Google Scholar 

  2. R. Helmolt, J. Wecker, B. Holzapfel, et al., Phys. Rev. Lett. 71, 2331 (1993).

    ADS  Google Scholar 

  3. P. Schiffer, A. P. Ramirez, W. Bao, and S. W. Cheong, Phys. Rev. Lett. 75, 3336 (1995).

    Article  ADS  Google Scholar 

  4. P. G. Radaelli, D. E. Cox, M. Marezio, et al., Phys. Rev. Lett. 75, 4488 (1995).

    Article  ADS  Google Scholar 

  5. J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  6. A. Urushibara, Y. Moritomo, T. Arima, et al., Phys. Rev. B 51, 14103 (1995).

  7. S. V. Trukhanov, J. Mater. Chem. 13, 347 (2003).

    Article  Google Scholar 

  8. J. Töpfer and J. B. Goodenough, J. Solid State Chem. 130, 117 (1997).

    Google Scholar 

  9. R. A. DeSouza, M. S. Islamb, and E. Ivers-Tiffée, J. Mater. Chem. 9, 1621 (1999).

    Google Scholar 

  10. Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999).

    Article  ADS  Google Scholar 

  11. E. Dagotto, T. Hotta, A. Moreo, et al., Phys. Rep. 344, 1 (2001).

    Article  ADS  Google Scholar 

  12. S. M. Dunaevskii, Fiz. Tverd. Tela (St. Petersburg) 46, 193 (2004) [Phys. Solid State 46, 193 (2004)].

    Google Scholar 

  13. G. Matsumoto, J. Phys. Soc. Jpn. 29, 606 (1970).

    Google Scholar 

  14. G. Matsumoto, J. Phys. Soc. Jpn. 29, 615 (1970).

    Google Scholar 

  15. I. Dzialoshinsky, J. Phys. Chem. Solids 4, 241 (1958).

    Google Scholar 

  16. T. Moriya, Phys. Rev. 120, 91 (1960).

    Article  ADS  Google Scholar 

  17. S. V. Trukhanov, N. V. Kasper, I. O. Troyanchuk, et al., J. Solid State Chem. 169, 85 (2002).

    Article  ADS  Google Scholar 

  18. A. Barnabé, F. Millange, A. Maignan, et al., Chem. Mater. 10, 252 (1998).

    Google Scholar 

  19. A. Barnabé, M. Gaudon, C. Bernard, et al., Mater. Res. Bull. 39, 725 (2004).

    Google Scholar 

  20. B. C. Tofield and W. R. Scott, J. Solid State Chem. 100, 183 (1974).

    ADS  Google Scholar 

  21. C. R. Wiebe, J. E. Greedan, J. S. Gardner, et al., Phys. Rev. B 64, 064421 (2001).

    Google Scholar 

  22. S. V. Trukhanov, M. V. Bushinskii, I. O. Troyanchuk, and H. Szymczak, Zh. Éksp. Teor. Fiz. 126, 874 (2004) [JETP 99, 756 (2004)].

    Google Scholar 

  23. N. Abdelmoula, K. Guidara, A. Cheikh-Rouhou, and E. Dhari, J. Solid State Chem. 151, 139 (2000).

    Article  ADS  Google Scholar 

  24. S. V. Trukhanov, I. O. Troyanchuk, N. V. Pushkarev, and H. Szymczak, Zh. Éksp. Teor. Fiz. 122, 356 (2002) [JETP 95, 308 (2002)].

    Google Scholar 

  25. Y. M. Goldsmidt, J. Maten Naturwid. Kl. 2, 97 (1926).

    Google Scholar 

  26. E. L. Nagaev, Phys. Rep. 346, 387 (2001).

    Article  ADS  Google Scholar 

  27. J. B. Goodenough, Phys. Rev. 100, 564 (1955).

    Article  ADS  Google Scholar 

  28. I. O. Troyanchuk, S. V. Trukhanov, H. Szymczak, et al., Zh. Éksp. Teor. Fiz. 120, 183 (2001) [JETP 93, 161 (2001)].

    Google Scholar 

  29. R. D. Shannon, Acta Cryst. A 32, 751 (1976).

    Article  Google Scholar 

  30. J. B. Goodenough, Magnetism and the Chemical Bond (Interscience, New York, 1963; Metallurgiya, Moscow, 1968).

    Google Scholar 

  31. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  ADS  Google Scholar 

  32. C. Zener, Phys. Rev. 82, 440 (1951).

    Article  ADS  Google Scholar 

  33. S. V. Trukhanov, N. V. Kasper, I. O. Troyanchuk, et al., Phys. Status Solidi B 233, 321 (2002).

    Google Scholar 

  34. J. B. Goodenough, A. Wold, R. J. Arnott, and N. Menyuk, Phys. Rev. 124, 373 (1961).

    Article  ADS  Google Scholar 

  35. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996; Nauka, Moscow, 1978).

    Google Scholar 

  36. S. V. Trukhanov, I. O. Troyanchuk, M. Hervieu, et al., Phys. Rev. B 66, 184424 (2002).

    Google Scholar 

  37. K. R. Poeppelmeier, M. E. Leonowicz, and J. M. Longo, J. Solid State Chem. 44, 89 (1982).

    Article  ADS  Google Scholar 

  38. K. R. Poeppelmeier, M. E. Leonowicz, J. C. Scanlon, et al., J. Solid State Chem. 45, 71 (1982).

    Article  ADS  Google Scholar 

  39. S. Nafis, J. A. Woollam, Z. S. Shan, and D. J. Sellmyer, J. Appl. Phys. 70, 6050 (1991).

    Article  ADS  Google Scholar 

  40. F. Conde, C. Gomez-Polo, and A. Hernando, J. Magn. Magn. Mater. 138, 123 (1994).

    ADS  Google Scholar 

  41. C. P. Bean and J. D. Livingstone, J. Appl. Phys. 30, S120 (1959).

    Article  Google Scholar 

  42. H. J. Williams, Phys. Rev. 52, 747 (1937).

    ADS  Google Scholar 

  43. Yu. Bukhantsev, Ya. M. Mukovskii, and H. Szymczak, J. Magn. Magn. Mater. 272, 2053 (2004).

    Article  ADS  Google Scholar 

  44. I. O. Troyanchuk, S. V. Trukhanov, D. D. Khalyavin, and H. Szymczak, J. Magn. Magn. Mater. 208, 217 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, Vol. 127, No. 1, 2005, pp. 107–119.

Original Russian Text Copyright © 2005 by Trukhanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trukhanov, S.V. Peculiarities of the magnetic state in the system La0.70Sr0.30MnO3−γ (0 ≤ γ ≤ 0.25). J. Exp. Theor. Phys. 100, 95–105 (2005). https://doi.org/10.1134/1.1866202

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1866202

Keywords

Navigation