Skip to main content
Log in

Effect of magnetic field on the thermal nonlinearity of surface waves in plasma-metal structures

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A study is made into the effect of the nonlinear mechanism of plasma electron heating on the dispersion properties of potential surface waves propagating along the interface between a metal and finite-pressure magnetoactive plasma. An external steady magnetic field is directed normally to the interface. Different mechanisms of electron energy loss are treated in a weak heating approximation. The energy balance equation is used to determine the spatial distribution of the plasma electron temperature under conditions of nonlocal heating. The effect of the plasma parameters on the nonlinear shift of the wavenumber and on the spatial damping factor of surface waves is investigated. The results obtained are valid for both semiconductor and gaseous plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Moisan, J. Hurbert, J. Margot, and Z. Zakrzewski, The Development and Use of Surface-Wave Sustained Discharges for Applications in Advanced Technologies Based on Wave and Beam Generated Plasmas (Kluwer, Amsterdam, 1999), pp. 1–42.

    Google Scholar 

  2. N. A. Azarenkov and K. N. Ostrikov, Phys. Rep. 308, 333 (1999).

    Article  ADS  Google Scholar 

  3. N. A. Azarenkov, Zh. Tekh. Fiz. 57, 1165 (1987) [Sov. Phys. Tech. Phys. 32, 681 (1987)].

    Google Scholar 

  4. N. A. Azarenkov, A. N. Kondratenko, and Yu. O. Tyshetskii, Zh. Tekh. Fiz. 69(11), 30 (1999) [Tech. Phys. 44, 1286 (1999)].

    Google Scholar 

  5. A. V. Gurevich and A. B. Shvartsburg, Nonlinear Theory of Radio Wave Propagation in Ionosphere (Nauka, Moscow, 1973).

    Google Scholar 

  6. V. I. Karpman, Non-Linear Waves in Dispersive Media (Nauka, Moscow, 1973; Pergamon, Oxford, 1994).

    Google Scholar 

  7. J. Weiland and H. Wilhelmsson, Coherent Nonlinear Interaction of Waves in Plasmas (Pergamon, Oxford, 1976; Énergoizdat, Moscow, 1981).

    Google Scholar 

  8. A. N. Kondratenko, Plasma Waveguides (Atomizdat, Moscow, 1976).

    Google Scholar 

  9. N. A. Azarenkov, Yu. A. Akimov, and A. V. Gapon, Vestn. Khar’kovsk. Nats. Univ. Ser. Fiz. 496(4), 29 (2000).

    Google Scholar 

  10. Yu. M. Aliev, A. G. Boev, and A. Shivarova, J. Phys. D 17, 2233 (1984).

    Article  ADS  Google Scholar 

  11. N. A. Azarenkov, K. N. Ostrikov, and M. Y. Yu, J. Appl. Phys. 84, 4176 (1998).

    ADS  Google Scholar 

  12. A. G. Litvak and V. A. Mironov, Nonlinear Thermal Phenomena in Plasmas (Inst. Prikl. Fiz. Akad. Nauk SSSR, Gorki, 1979).

    Google Scholar 

  13. N. A. Azarenkov, Yu. A. Akimov, and V. P. Olefir, Vestn. Khar’kovsk. Nats. Univ. Ser. Fiz. 574(4), 62 (2002).

    Google Scholar 

  14. V. I. Maslov, Fiz. Plazmy 16, 394 (1990) [Sov. J. Plasma Phys. 16, 225 (1990)].

    ADS  Google Scholar 

  15. N. A. Azarenkov, Yu. A. Akimov, and V. P. Olefir, Vopr. At. Nauki Tekh., Ser. 8: Fiz. Plazmy, No. 5, 92 (2002).

  16. D. P. Schmidt, N. B. Meezan, W. A. Hargus, Jr., et al., Plasma Sources Sci. Technol. 9, 68 (2000).

    Article  ADS  Google Scholar 

  17. F. G. Bass and Yu. G. Gurevich, Hot Electrons and High-Power Electromagnetic Waves in Semiconductor and Gas Discharge Plasmas (Nauka, Moscow, 1975).

    Google Scholar 

  18. F. G. Bass and Yu. G. Gurevich, Sov. Phys. J. 14, 113 (1971).

    Google Scholar 

  19. N. N. Beletskii, V. M. Svetlichnyi, D. D. Khalameida, and V. M. Yakovenko, Microwave Phenomena in Heterogeneous Semiconductor Structures (Naukova Dumka, Kiev, 1991).

    Google Scholar 

  20. Yu. M. Aliev, K. Ivanova, M. Moisan, et al., Plasma Sources Sci. Technol. 2, 145 (1993).

    Article  ADS  Google Scholar 

  21. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Non-Equilibrium Low-Temperature Plasma (Consultans Bureau, New York, 1987).

    Google Scholar 

  22. V. E. Golant, A. P. Zhilinskii, and S. A. Sakharov, Fundamentals of Plasma Physics (Atomizdat, Moscow, 1977; Wiley, New York, 1980).

    Google Scholar 

  23. Yu. M. Aliev, A. V. Maximov, and H. Schluter, Phys. Scr. 48, 464 (1993).

    ADS  Google Scholar 

  24. Yu. M. Aliev, A. V. Maximov, I. Ghanashev, et al., IEEE Trans. Plasma Sci. 23, 409 (1995).

    Article  Google Scholar 

  25. Yu. M. Aliev, V. Yu. Bychenkov, A. V. Maximov, et al., Plasma Sources Sci. Technol., No. 1, 126 (1992).

  26. Yu. M. Aliev, H. Schluter, and A. Shivarova, Plasma Sources Sci. Technol., No. 5, 514 (1996).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 74, No. 1, 2004, pp. 40–47.

Original Russian Text Copyright © 2004 by Azarenkov, Akimov, Olefir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azarenkov, N.A., Akimov, Y.A. & Olefir, V.P. Effect of magnetic field on the thermal nonlinearity of surface waves in plasma-metal structures. Tech. Phys. 49, 39–46 (2004). https://doi.org/10.1134/1.1642676

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1642676

Keywords

Navigation