Skip to main content
Log in

Potential of a dust grain in a nitrogen plasma with a condensed disperse phase at room and cryogenic temperatures

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The first numerical study is presented of the self-consistent potential of a dust grain in a nitrogen plasma with a condensed disperse phase at room and cryogenic temperatures and at high gas pressures for which the electron and ion transport in the plasma can be described in the hydrodynamic approximation. It is shown that the potential of the dust grain is described with good accuracy by the Debye potential, in which case, however, the screening radius turns out to be larger than the electron Debye radius. The difference between the radii is especially large in a plasma with high ionization rates (about 1016–1018 cm−3 s−1) at room temperature. It is found that, in a certain range of the parameters of a nitrogen dusty plasma, the parameter describing the interaction between the grains exceeds the critical value above which one would expect the formation of plasma-dust structures such as Coulomb crystals. For a plasma at cryogenic temperature (T=77 K), this range is significantly wider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997) [Phys. Usp. 40, 53 (1997)].

    Google Scholar 

  2. A. P. Nefedov, O. F. Petrov, and V. E. Fortov, Usp. Fiz. Nauk 167, 1215 (1997) [Phys. Usp. 40, 1163 (1997)].

    Google Scholar 

  3. A. F. Pal’, A. O. Serov, A. N. Starostin, et al., Zh. Éksp. Teor. Fiz. 119, 272 (2001) [JETP 92, 235 (2001)].

    Google Scholar 

  4. J. P. Hansen, Phys. Rev. A 8, 3096 (1973).

    ADS  Google Scholar 

  5. J. P. Hansen, Phys. Rev. A 8, 3110 (1973).

    ADS  Google Scholar 

  6. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).

    Article  ADS  Google Scholar 

  7. H. Ikezi, Phys. Fluids 29, 1764 (1986).

    Article  ADS  Google Scholar 

  8. M. O. Robbins, K. Kremer, and G. S. Grest, J. Chem. Phys. 88, 3286 (1988).

    Article  ADS  Google Scholar 

  9. M. J. Stevens and M. O. Robbins, J. Chem. Phys. 98, 2319 (1993).

    Article  ADS  Google Scholar 

  10. E. J. Meijer and D. Frenkel, J. Chem. Phys. 94, 2269 (1991).

    Article  ADS  Google Scholar 

  11. R. T. Farouki and S. Hamaguchi, Appl. Phys. Lett. 61(25), 2973 (1992).

    Article  ADS  Google Scholar 

  12. S. Hamaguchi, R. T. Farouki, and D. H. E. Dubin, Phys. Rev. E 56, 4671 (1997).

    Article  ADS  Google Scholar 

  13. O. S. Vaulina and S. A. Khrapak, Zh. Éksp. Teor. Fiz. 117, 326 (2000) [JETP 90, 287 (2000)].

    Google Scholar 

  14. A. Melzer, T. Trottenberg, and A. Piel, Phys. Lett. A 191, 301 (1994).

    Article  ADS  Google Scholar 

  15. A. Melzer, A. Homann, and A. Piel, Phys. Rev. E 53, 2757 (1996).

    Article  ADS  Google Scholar 

  16. H. Thomas, G. E. Morfill, V. Demmel, et al., Phys. Rev. Lett. 73, 652 (1994).

    ADS  Google Scholar 

  17. H. M. Thomas and G. E. Morfill, Nature 379, 806 (1996).

    Article  ADS  Google Scholar 

  18. J. H. Chu and Lin I, Phys. Rev. Lett. 72, 4009 (1994).

    ADS  Google Scholar 

  19. J. H. Chu, J.-B. Du, and Lin I, J. Phys. D 27, 296 (1994).

    Article  ADS  Google Scholar 

  20. Y. Hayashii and K. Tachibana, Jpn. J. Appl. Phys., Part 2 33, L804 (1994).

    Google Scholar 

  21. Y. Hayashii and K. Takahashi, Jpn. J. Appl. Phys., Part 1 36, 4976 (1997).

    Google Scholar 

  22. A. Barkan and R. L. Merlino, Phys. Plasmas 2, 3261 (1995).

    ADS  Google Scholar 

  23. V. E. Fortov, A. P. Nefedov, V. M. Torchinskii, et al., Pis’ma Zh. Éksp. Teor. Fiz. 64, 86 (1996) [JETP Lett. 64, 92 (1996)].

    Google Scholar 

  24. V. E. Fortov, A. P. Nefedov, V. M. Torchinsky, et al., Phys. Lett. A 229, 317 (1997).

    Article  ADS  Google Scholar 

  25. V. E. Fortov, A. P. Nefedov, O. F. Petrov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 63, 176 (1996) [JETP Lett. 63, 187 (1996)].

    Google Scholar 

  26. V. E. Fortov, A. P. Nefedov, O. F. Petrov, et al., Zh.Ékp. Teor. Fiz. 111, 476 (1997) [JETP 84, 256 (1997)].

    Google Scholar 

  27. V. E. Fortov, V. I. Vladimirov, L. V. Deputatova, et al., Dokl. Akad. Nauk 366, 184 (1999) [Dokl. Phys. 44, 279 (1999)].

    Google Scholar 

  28. V. E. Fortov, A. P. Nefedov, V. I. Vladimirov, et al., Phys. Lett. A 258, 305 (1999).

    Article  ADS  Google Scholar 

  29. S. Peters, A. Homann, A. Melzer, and A. Piel, Phys. Lett. A 223, 389 (1996).

    Article  ADS  Google Scholar 

  30. A. Homann, A. Melzer, S. Peters, and A. Piel, Phys. Rev. E 56, 7138 (1997).

    Article  ADS  Google Scholar 

  31. A. Homann, A. Melzer, and A. Piel, Phys. Rev. E 59, R3835 (1999).

    Article  ADS  Google Scholar 

  32. A. F. Pal’, A. N. Starostin, and A. V. Filippov, Fiz. Plazmy 27, 155 (2001) [Plasma Phys. Rep. 27, 143 (2001)].

    Google Scholar 

  33. B. Davison, Neutron Transport Theory, with the collaboration of J. B. Sykes (Clarendon Press, Oxford, 1957; Atomizdat, Moscow, 1960).

    Google Scholar 

  34. G. I. Marchuk, Methods of Computation of Nuclear Reactors (Atomizdat, Moscow, 1961).

    Google Scholar 

  35. G. J. M. Hagelaar, F. J. De Hoog, and G. M. W. Kroesen, Phys. Rev. E 62, 1452 (2000).

    Article  ADS  Google Scholar 

  36. N. A. Gorbunov, N. B. Kolokolov, and A. A. Kudryavtsev, Fiz. Plazmy 15, 1513 (1989) [Sov. J. Plasma Phys. 15, 881 (1989)].

    Google Scholar 

  37. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoizdat, Moscow, 1991; CRC Press, Boca Raton, 1997).

    Google Scholar 

  38. C. Cason, J. E. Perkins, A. H. Werkheizer, and J. Duderstadt, AIAA J. 15, 1079 (1977).

    Google Scholar 

  39. H. Bohringer and F. Arnold, Int. J. Mass Spectrom. Ion Phys. 49, 61 (1983).

    Google Scholar 

  40. O. V. Kozlov, Electrical Probe in Plasmas (Atomizdat, Moscow, 1969).

    Google Scholar 

  41. P. M. Chung, L. Talbot, and K. J. Touryan, Electric Probes in Stationary and Flowing Plasmas: Theory and Application (Springer-Verlag, Berlin, 1975; Mir, Moscow, 1978).

    Google Scholar 

  42. B. V. Alekseev and V. A. Kotel’nikov, Probe Technique of Plasma Diagnostics (Énergoatomizdat, Moscow, 1988).

    Google Scholar 

  43. V. E. Fortov and I. T. Iakubov, Physics on Nonideal Plasma (Hemisphere, New York, 1990).

    Google Scholar 

  44. J. B. Pieper and J. Goree, Phys. Rev. Lett. 77, 3137 (1996).

    Article  ADS  Google Scholar 

  45. U. Konopka, L. Ratke, and H. M. Thomas, Phys. Rev. Lett. 79, 1269 (1997).

    Article  ADS  Google Scholar 

  46. U. Konopka, G. E. Morfill, and L. Ratke, Phys. Rev. Lett. 84, 891 (2000).

    Article  ADS  Google Scholar 

  47. O. Bystrenko and A. Zagorodny, Phys. Lett. A 255, 325 (1999).

    Article  ADS  Google Scholar 

  48. O. Bystrenko and A. Zagorodny, Phys. Lett. A 262, 72 (1999).

    Article  ADS  Google Scholar 

  49. G. Lapenta, Phys. Plasmas 6, 1442 (1999).

    Article  ADS  Google Scholar 

  50. G. Lapenta, Phys. Rev. E 62, 1175 (2000).

    Article  ADS  Google Scholar 

  51. V. V. Ivanov, A. F. Pal’, T. V. Rakhimova, et al., Zh. Éksp. Teor. Fiz. 115, 2020 (1999) [JETP 88, 1105 (1999)].

    Google Scholar 

  52. S. Alexander, P. M. Chaikin, P. Grant, et al., J. Chem. Phys. 80, 5776 (1984).

    ADS  Google Scholar 

  53. V. Yu. Baranov, I. A. Belov, A. V. Dem’yanov, et al., in Isotopes: Properties, Production, Applications, Ed. by V. Yu. Baranov (AT, Moscow, 2000), p. 626.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 28, No. 1, 2002, pp. 32–44.

Original Russian Text Copyright © 2002 by Pal’, Sivokhin, Starostin, Filippov, Fortov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal’, A.F., Sivokhin, D.V., Starostin, A.N. et al. Potential of a dust grain in a nitrogen plasma with a condensed disperse phase at room and cryogenic temperatures. Plasma Phys. Rep. 28, 28–39 (2002). https://doi.org/10.1134/1.1434293

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1434293

Keywords

Navigation