Skip to main content
Log in

Investigation of the percolation transition in a nonwetting liquid-nanoporous medium system

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The flows of liquid into and out of a nanoporous medium are studied as processes leading to the fluctuation formation and the growth of fractal clusters of filled and empty pores, respectively. The conditions for stable growth of such fluctuations are analyzed as a function of the interfacial energy between the liquid and the porous medium and the surface energy of the liquid. Expressions are obtained for the pressure at which the barrier for fluctuation filling and emptying of the pores vanishes. In general, it is shown for porous media with a pore-size distribution that these processes can be interpreted as a percolation phase transition. The volume and susceptibility of a liquid-porous medium system near the transition points with inflow and outflow of the liquid are calculated. The phenomenon of nonoutflow of a nonwetting liquid from a porous medium and hysteresis of the flow of liquid into and out of a porous medium are explained on the basis of the mechanism considered. The results of an experimental investigation of these processes in the system liquid Wood’s alloy-silochrome 80 and silochrome 120 are presented. The experimental data obtained can be described on the basis of the proposed mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Bogomolov, Phys. Rev. B 51, 17040 (1995).

    Google Scholar 

  2. R. Cafiero, G. Caldarelh, and A. Gabrielli, Phys. Rev. E 56, 1291 (1997).

    Article  ADS  Google Scholar 

  3. M. Mulder, Basic Principles of Membrane Technology (Kluwer, Dordrecht, 1996; Mir, Moscow, 1999).

    Google Scholar 

  4. T. Naheiri, K. A. Ludwig, M. Anand, et al., Sep. Sci. Technol. 32, 1589 (1997).

    Google Scholar 

  5. M. B. Rao and S. Sircar, J. Membr. Sci. 85, 253 (1993).

    Article  Google Scholar 

  6. Yu. A. Alekseev, V. N. Bogomolov, and T. B. Zhukova, Izv. Akad. Nauk SSSR, Ser. Fiz. 50, 418 (1986).

    Google Scholar 

  7. V. N. Bogomolov, Usp. Fiz. Nauk 124, 171 (1978) [Sov. Phys. Usp. 21, 77 (1978)].

    MathSciNet  Google Scholar 

  8. V. G. Balakirev, V. N. Bogomolov, V. V. Zhuravlev, et al., Kristallografiya 38(3), 111 (1993) [Crystallogr. Rep. 38, 348 (1993)].

    Google Scholar 

  9. V. N. Bogomolov, Poverkhnost 9, 136 (1992).

    Google Scholar 

  10. J. Feder, Fractals (Plenum, New York, 1988; Mir, Moscow, 1990).

    Google Scholar 

  11. B. M. Smirnov, Usp. Fiz. Nauk 149, 177 (1986) [Sov. Phys. Usp. 29, 481 (1986)].

    Google Scholar 

  12. I. M. Sokolov, Usp. Fiz. Nauk 150, 221 (1986) [Sov. Phys. Usp. 29, 506 (1986)].

    Google Scholar 

  13. M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  14. Yu. A. Kumzerov, A. A. Nabereznov, and S. V. Vakhrushev, Phys. Rev. B 52, 4772 (1995).

    Article  ADS  Google Scholar 

  15. P. G. de Gennes, Usp. Fiz. Nauk 151, 620 (1987).

    Google Scholar 

  16. A. Yu. Fadeev and V. A. Eroshenko, Ross. Khim. Zh. 39(6), 93 (1995).

    Google Scholar 

  17. V. A. Eroshenko and A. Yu. Fadeev, Zh. Fiz. Khim. 70, 1482 (1996).

    Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1964; Pergamon, New York, 1987).

    Google Scholar 

  19. H. Haken, Synergetics: an Introduction (Springer-Verlag, Berlin, 1977; Mir, Moscow, 1979).

    Google Scholar 

  20. A. A. Abrikosov, Pis’ma Zh. Éksp. Teor. Fiz. 29, 72 (1979) [JETP Lett. 29, 65 (1979)].

    Google Scholar 

  21. Physical and Chemical Aspects of Adsorbents and Catalysts, Ed. by B. G. Linsen (Academic, London, 1970; Mir, Moscow, 1978).

    Google Scholar 

  22. B. M. Smirnov, Usp. Fiz. Nauk 152, 133 (1987) [Sov. Phys. Usp. 30, 420 (1987)].

    Google Scholar 

  23. V. A. Dzis’ko, A. P. Karnaukhov, and D. V. Tarasov, Phisicochemical Fundamentals of Oxide Catalyst Synthesis (Nauka, Novosibirsk 1978).

    Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1965; Pergamon, New York, 1986).

    Google Scholar 

  25. M. I. Ozhovan and K. N. Semenov, Zh. Éksp. Teor. Fiz. 101, 1286 (1992) [Sov. Phys. JETP 75, 696 (1992)].

    Google Scholar 

  26. Churl-Young Park and Son-Ki Ihm, AIChE J. 36, 1641 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 118, No. 1, 2000, pp. 193–206.

Original Russian Text Copyright © 2000 by Borman, Grekhov, Troyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borman, V.D., Grekhov, A.M. & Troyan, V.I. Investigation of the percolation transition in a nonwetting liquid-nanoporous medium system. J. Exp. Theor. Phys. 91, 170–181 (2000). https://doi.org/10.1134/1.1307245

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1307245

Keywords

Navigation