Skip to main content
Log in

Prospects of using carbonaceous nanoparticles in binders for polymer composites

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Different aspects of using carbonaceous nanoparticles for the creation of polymer composites with improved physicomechanical and functional properties are considered. It is shown that functionalized car-bonaceous nanoparticles can be used as modifiers to control the process of curing and elastification of epoxy binders during the development of polymer composites for use in construction. The possibility of using nano-particle self-organization for conferring functional properties on composites and obtaining 3D-reinforced hybrid nanocomposites is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. R. Badamshina, M. P. Gafurova, Ya. I. Estrin, “Carbon nanotubes modification and synthesis of polymeric composites with their paticipation,” Usp. Khim. 79(11), 1027–1063 (2010).

    Article  Google Scholar 

  2. S. M. Aldoshin, E. R. Badamshina, and E. N. Kablov, “Polymeric nanocomposites is the new generation of polymer materials with increased operating parameters,” in Proc. Int. Forum on Nanotechnologies “Rusnanotech 2008” (Moscow, 2008), p. 385.

    Google Scholar 

  3. E. G. Rakov, “Chemistry and application of carbon nanotubes,” Usp. Khim. 70(10), 934–973 (2001).

    Article  Google Scholar 

  4. S. P. Gubin, O. V. Popkov, G. Yu. Yurkov, V. N. Nikiforov, Yu. A. Koksharov, and N. K. Eremenko, “Magnetic nanoparticles fixed on the surface of detonation nanodiamond microgranules,” Diamond Relat. Mater. 16(11), 1924–1928 (2007).

    Article  CAS  Google Scholar 

  5. S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, and G. Yu. Yurkov, “Magnetic nanoparticles: the way to produce, structure, properties,” Usp. Khim. 74(6) 539–574 (2005).

    Article  Google Scholar 

  6. D. Puglia, L. Valentini, and J. M. Kenny, “Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy,” J. Appl. Polymer Sci. 88, 452–458 (2003).

    Article  CAS  Google Scholar 

  7. L. Valentini, I. Armentano, D. Puglia, and J. M. Kenny, “Dynamics of amine functionalized nanotubes/epoxy composites by dielectric relaxation spectroscopy,” Carbon 42, 323–329 (2004).

    Article  CAS  Google Scholar 

  8. T. Zhou, X. Wangaand, and T. Wang, “Cure reaction of multi-walled carbon nanotubes/diglycidyl ether of bisphenol A/2-ethyl-4-methylimidazole(MWCNTs/DGEBA/EMI-2,4) nanocomposites: effect of carboxylic functionalization of MWCNTs,” Polymer Int. 58, 445–452 (2009).

    Article  CAS  Google Scholar 

  9. J. Wu and D. D. L Chung, “Calorimetric study of the effect of carbon fillers on the curing of epoxy,” Carbon 42, 3003–3042 (2004).

    Article  Google Scholar 

  10. H. Xie, B. Liu, Z. Yuan, J. Shen, and R. Cheng, “Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry,” J. Polymer Sci.: Part B: Polymer Phys. 42, 3701–3712 (2004).

    Article  CAS  Google Scholar 

  11. L. Valentini, I. Armentano, D. Puglia, and J. M. Kenny, “Dynamics of amine functionalized nanotubes/epoxy composites by dielectric relaxation spectroscopy,” Carbon 42, 323–329 (2004).

    Article  CAS  Google Scholar 

  12. D. Puglia, L. Valentini, I. Armentano, and J. M. Kenny, “Effects of single-walled carbon nanotube incorporation on the cure reaction of epoxy resin and its detection by Raman spectroscopy,” Diamond Relat. Mater. 12, 827–832 (2003).

    Article  CAS  Google Scholar 

  13. A. Visco, L. Calabrese, and C. Milone, “Cure rate and mechanical properties of a DGEBF epoxy resin modified with carbon nanotubes,” J. Reinf. Plast. Composit. 28, 937–949 (2009).

    Article  CAS  Google Scholar 

  14. V. G. Khozin, Epoxy Polymers Strengthening (Izd. PIK “Dom pechati”, Kazan, 2004) [in Russian].

    Google Scholar 

  15. A. F. Magsumova, “The way to improve the processes for producing units made of composites by controlling surface energy and interphase interaction,” Extended Abstract of Candidate’s Dissertation (2005).

    Google Scholar 

  16. R. V. Akatenkov, S. V. Kondrashov, A. S. Fokin, and P. S. Marakhovskii, “Features of polymer grids formation under curing of epoxy oligomers with functionalized nanotubes,” Aviats. Mater. Tekhnol., No. 2, 31–37 (2011).

    Google Scholar 

  17. A. Allaoui and N. El Bounia, “How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites?,” eXPRESS Polym. Lett. 3(9), 588–594 (2009).

    Article  CAS  Google Scholar 

  18. F. Hernandez-Pereza, F. Avilesa, A. May-Pata, A. Valadez-Gonzaleza, P. J. Herrera-Francoa, and P. Bartolo-Perez, “Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes,” Composit. Sci. Technol. 68, 1422–1431 (2008).

    Article  Google Scholar 

  19. R. V. Akatenkov, V. M. Aleksashin, I. V. Anoshkin, A. N. Babin, V. A. Bogatov, V. P. Grachev, S. V. Kondrashov, V. T. Minakov, and E. G. Rakov, “Effect of small quantity of functionalized nanotubes onto physical-mechanical properties and structure of epoxy composites,” Deform. Razrush. Mater., No. 11, 35–40 (2011).

    Google Scholar 

  20. S. Wang, R. Liang, T. Liu, B. Wang, and C. Zhang, “Effective amino-functionalization of carbon nanotubes for reinforcing epoxy polymer composites,” Nanotecnol. 17, 1551–1557 (2006).

    Article  CAS  Google Scholar 

  21. S. Wang, R. Liang, T. Liu, B. Wang, and C. Zhang, “Covalent addition of diethyltoluenediamines onto carbon nanotubes for composite application,” Polym. Compos. 30(8), 1050–1057 (2009).

    Article  CAS  Google Scholar 

  22. J. Shen, W. Huang, L. Wu, Y. Hu, and M. Ye, “Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes,” Composites: Part A 38, 1331–1336 (2007).

    Article  Google Scholar 

  23. J. Shen, W. Huang, L. Wu, Y. Hu, and M. Ye, “The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites,” Composit. Sci. Technol. 67, 3041–3050 (2007).

    Article  CAS  Google Scholar 

  24. J. Wang, Z. Fang, A. Gu, L. Xu, and Fu Liu, “Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix,” J. Appl. Polymer Sci. 100, 97–104 (2006).

    Article  CAS  Google Scholar 

  25. J. Zhy, H. Peng, F. Rodriguez, J. L. Margrave, V. N. Khabashesky, A. M. Imam, K. Lozano, E. V. Barera, “Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes,” Adv. Funct. Mater. 14(7), 643–648 (2004).

    Article  Google Scholar 

  26. C.-H. Tseng, C.-C. Wang, and C. Y. Chen, “Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites,” Chem. Mater. 19, 308–315 (2007).

    Article  CAS  Google Scholar 

  27. W. J. Choi, R. L. Powell, and D. S. Kim, “Curing behavior and properties of epoxy nanocomposites with amine functionalized multiwall carbon nanotubes,” Polymer Composite 30(4), 415–421 (2009).

    Article  CAS  Google Scholar 

  28. J. T. Kim, H.-C. Kim, S.-K. Kim, and J. Kathi, “3-aminopropyltriethoxysilane effect on thermal and mechanical properties of multi-walled carbon nanotubes reinforced epoxy composites,” J. Composite Mater. 43(22), 2533–2541 (2009).

    Article  CAS  Google Scholar 

  29. G. Sui, W. H. Zhona, M. C. Liu, and P. H. Wu, “Enhancing mechanical properties of an epoxy resin using “Liquid nano-reinforcements”,” Mater. Sci. Eng. A 512, 139–142 (2009).

    Article  Google Scholar 

  30. M. L. Auad, M. A. Mosiewicki, C. Uzunpinar, and R. J. J. Williams, “Functionalization of carbon nanotubes and carbon nanofibers used in epoxy/amine matrices that avoid partitioning of the monomers at the fiber interface,” Polymer Eng. Sci. 50(1), 183–190 (2010).

    Article  CAS  Google Scholar 

  31. Yu. A. Mikhailin, Thermo-Resistant Polymers and Polymeric Materials (Professiya, St. Petersburg, 2006) [in Russian].

    Google Scholar 

  32. G. V. Korolev, M. M. Mogilevich, and I. V. Golikov, Cross-Linked Polyacrilates. Microheterogeneous Structures, Physical Grids, Deformation-Strength Properties (Khimiya, Moscow, 1995) [in Russian].

    Google Scholar 

  33. A. N. Ponomarev, “Nanotechnology and nanostructure materials,” Industriya, No. 1, 14–15 (2002).

    Google Scholar 

  34. S. V. Kondrashov, V. A. Bogatov, T. P. D’yachkova, I. A. Mansurova, P. S. Marakhovskii, I. A. Mokretsova, and A. S. Fokin, “The way to raise the heat resistance of epoxy binder by using carbon nanotubes,” Perspekt. Mater. (2013) (in press).

    Google Scholar 

  35. G. M. Gunyaev, L. V. Chursova, O. A. Komarova, and A. G. Gunyaeva, “Structure carbonplastics modified by nanoparticles,” in Appendix to the Journal “Aviation Materials and Technologies” (VIAM, Moscow, 2012), pp. 277–286 [in Russian].

    Google Scholar 

  36. F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-a comparative study,” Composit. Sci. Technol. 65, 2300–2313 (2005).

    Article  CAS  Google Scholar 

  37. F. H. Gojny, M. H. G. Wichmann, U. Kopke, B. Fied- ler, and K. Schulte, “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content,” Composit. Sci. Technol. 64, 2363–2371 (2004).

    Article  CAS  Google Scholar 

  38. R. V. Akatenkov, K. R. Akhmadeeva, V. A. Bogatov, S. V. Kondrashov, P. S. Marakhovskii, and A. S. Fokin, RF Patent No. 2011118714 (16.07.2012).

  39. T. Villmow, B. Kretzschmar, and P. Pötschke, “Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites,” Composit. Sci. Technol. 70, 2045–2055 (2010).

    Article  CAS  Google Scholar 

  40. B. Krause, R. Boldt, and P. Pötschke, “A method for determination of length distributions of multiwalled carbon nanotubes before and after melt processing,” Carbon 49(4), 1243–1247 (2011).

    Article  CAS  Google Scholar 

  41. G. R. Kasaliwal, S. Pegel, A. Göldel, P. Pötschke, and G. Heinrich, “Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate,” Polymer 51, 2708–2720 (2010).

    Article  CAS  Google Scholar 

  42. S. Pegela, P. Potschkea, G. Petzold, I. Alig, S. M. Dudkin, and D. Lellinger, “Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts,” Polymer 49, 974–984 (2008).

    Article  Google Scholar 

  43. J.-H. Du, J. Bai, and H.-M. Cheng, “The present status and key problems of carbon nanotube based polymer composites,” eXPRESS Polymer Lett. 1(5), 253–273 (2007).

    Article  CAS  Google Scholar 

  44. K. Yu, Z. Zhang, Y. Liu, and J. Leng, “Carbon nanotube chains in a shape memory polymer/carbon black composite: to significantly reduce the electrical resistivity,” Appl. Phys. Lett. 98, 074102–074104 (2011).

    Article  Google Scholar 

  45. Y. Huang, L. Ning, M. Yanfeng, D. Feng, L. Feifei, H. Xiaobo, L. Xiao, G. Hongjun, and C. Yongsheng, “The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites,” Carbon 10, 1016–1028 (2007).

    Google Scholar 

  46. X. Changshu, P. Yubai, L. Xuejian, S. Xingwei, S. Xiaomei, and G. Jingkun, “Microwave attenuation of multi-walled carbon nanotube-fused silica composites,” Appl. Phys. Lett. 87, 123103–123105 (2005).

    Article  Google Scholar 

  47. V. E. Muradyan, E. A. Sokolov, S. D. Babenko, and A. P. Moravskii, “Dielectric properties of composites modified by carbon nanostructures in the microwave band,” Zh. Tekh. Fiz. 80(2), 83–87 (2010).

    Google Scholar 

  48. B. De. Vivo, L. Guadagno, P. Lambeerrttii, R. Raimo, M. S. Sarto, A. Tamburrano, V. Tucci, and L. Vertuccio, “Electromagnetic properties of carbon nanotube/epoxy nanocomposites,” in IEEE Conf. “2009 EMC Europe Workshop Materials and Applications” (Athenes, June 11–12, 2009).

    Google Scholar 

  49. Q. Huang, T. B. Holland, A. K. Mukherjee, E. Chojnack, M. Malloy, and M. Tigner, “Carbon nanotube RF absorbing materials,” in Proc. SRF2009 (Berlin, 2009).

    Google Scholar 

  50. R. K. Challa, D. Kajfez, V. Demir, J. R. Gladden, and A. Z. Elsherbeni, “Characterization of multiwalled carbon nanotube (MWCNT) composites in a waveguide of square cross section,” IEEE Microwave Wireless Components Lett. 18(3), 161–163 (2008).

    Article  Google Scholar 

  51. L. Ning, Y. Huang, D. Feng, H. Xiaobo, L. Xiao, G. Hongjun, M. Yanfeng, L. Feifei, C. Yongsheng, and P. C. Eklun, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).

    Article  Google Scholar 

  52. X. Hua and S. M. Anlage, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90, 183119–183121 (2007).

    Article  Google Scholar 

  53. X. Hu, Z. Shixong, and S. M. Anlage, “Frequency- and electric-field-dependent conductivity of single-walled carbon nanotube networks of varying density,” Phys. Rev. B 77, 075418–075423 (2008).

    Article  Google Scholar 

  54. R. V. Akatenkov, I. V. Anoshkin, A. A. Belyaev, V. V. Bitt, V. A. Bogatov, T. P. D’yachkova, K. E. Kutsevich, S. V. Kondrashov, A. M. Romanov, V. V. Shirokov, and N. V. Khorobrov, “Effect of carbon nanotubes structure organization onto radio shielding and electroconducting nanocomposites properties,” Aviats. Mater. Tekhnol., No. 1, 35–42 (2011).

    Google Scholar 

  55. E. Bekyarova, M. E. Itkis, N. Cabrera, B. Zhao, A. Yu, J. Gao, and R. C. Haddon, “Electronic properties of single-walled carbon nanotube networks,” J. Am. Chem. Soc., No. 127, 5990–5995 (2005).

    Google Scholar 

  56. G. M. Gunyaev, L. V. Chursova, A. E. Raskutin, G. V. Nachinkina, A. G. Gunyaeva, and V. M. Kuprienko, “Lightning-proof coatings for structure carbon plastics, containing nanoparticles,” in All Materials. Encyclopedia (2012), No. 3, pp. 24–35.

  57. E. N. Kablov, G. M. Gunyaev, S. I. Il’chenko, A. N. Ponomarev, T. N. Kavun, O. A. Komarova, and A. E. Kopylov, RF Patent No. 2217320 (27.11.2003).

  58. G. M. Gunyaev, L. V. Chursova, A. E. Raskutin, and A. G. Gunyaeva, “Lightning-proof of modern polymeric composites,” Aviats. Mater. Tekhnol., No. 2, 36–42 (2012).

    Google Scholar 

  59. G. M. Gunyaev, E. N. Kablov, and V. M. Aleksashin, “The way to modify carbon plastics by carbon nanotubes,” Ross. Khim. Zh. (Zh. Ross. Khim. Obsch. im. D. I. Mendeleeva) 54(1), 5–11 (2010).

    CAS  Google Scholar 

  60. G. Lubineau and A. Rahaman, “A Review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements,” Carbon 50, 2377–2395 (2012).

    Article  CAS  Google Scholar 

  61. Z. Shen, H. Ching, S. Lehoczky, I. Muntele, and D. Ila, “Carbon nanotube growth on carbon fibers,” Diamond Relat. Mater. 12(10–11), 1825–1838 (2003).

    Google Scholar 

  62. K. Otsuka, Y. Abe, N. Kanai, Y. Kobayashi, S. Takenaka, and E. Tanabe, “Synthesis of carbon nanotubes on Ni/carbon-fiber catalysts under mild conditions,” Carbon 42(4), 727–736 (2004).

    Article  CAS  Google Scholar 

  63. Z. R. Ismagilov, N. V. Shikina, V. N. Kruchinin, N. A. Rudina, V. A. Ushakov, N. T. Vasenin, and H. J. Veringa, “Development of methods of growing carbon nanofibers on silica glass fiber supports,” Catalysis Today 102–103, 85–93 (2005).

    Google Scholar 

  64. W. Down and R. Baker, “Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers,” J. Mater. Res. 10, 625–633 (1995).

    Article  Google Scholar 

  65. H. Qian, A. Bismarck, E. S. Greenhalgh, and M. S. Shaffer, “Carbon nanotube grafted silica fibers: characterizing the interface at the single fiber level,” Compos. Sci. Technol. 70(2), 393–399 (2010).

    Article  CAS  Google Scholar 

  66. R. J. Sager, P. J. Klein, D. C. Lagoudas, Q. Zhang, J. Liu, L. Dai, and L. W. Baur, “Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix,” Compos. Sci. Technol. 69, 898–904 (2009).

    Article  CAS  Google Scholar 

  67. H. Qian, A. Bismarck, E. Greehalgh, G. Kalinka, and M. Shaffer, “Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level,” Chem. Mater. 20, 1862–1869 (2008).

    Article  CAS  Google Scholar 

  68. E. Bekyarova, E. T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H. T. Hahn, T.-W. Chou, M. E. Itkis, and R. C. Haddon, “Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites,” Langmuir 23, 3970–3974 (2007).

    Article  CAS  Google Scholar 

  69. J. Zhang, R. Zhuang, J. Liu, E. Ma, G. Heinrich, and S. Gao, “Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites,” Carbon 48, 2273–2281 (2010).

    Article  CAS  Google Scholar 

  70. A. Godara, L. Gorbatikh, G. Kalinka, A. Warrier, O. Rochez, L. Mezzo, F. Luizi, A. W. van Vuure, S. V. Lomov, and I. Verpoest, “Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes,” Composit. Sci. Technol. 70, 1346–1352 (2010).

    Article  CAS  Google Scholar 

  71. S.-L. Gao, E. Ma, and R. Plonka, “Nanocomposite coatings for healing surface defects of glass fibers and improving interfacial adhesion,” Composit. Sci. Technol. 68, 2892–2901 (2008).

    Article  CAS  Google Scholar 

  72. F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, “Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites,” Chem. Phys. Lett. 370, 820–824 (2003).

    Article  CAS  Google Scholar 

  73. E. Bekyarova, E. T. Thostenson, A. Yu, M. E. Itkis, D. Fakhrutdinov, T.-W. Chou, and R. C. Haddon, “Functionalized single-walled carbon nanotubes for carbon fiber-epoxy composites,” J. Phys. Chem. C 111, 17865–17871 (2007).

    Article  CAS  Google Scholar 

  74. J. Cho, J. Y. Chen, and I. M. Daniel, “Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement,” Scripta Mater. 56, 685–688 (2007).

    Article  CAS  Google Scholar 

  75. F. H. Gojny, M. H. G. Wichmann, B. Fiedler, W. Bauhofer, and K. Schulte, “Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites,” Composites: Part A 36, 1525–1535 (2005).

    Article  Google Scholar 

  76. J. Qiu, C. Zhang, B. Wang, and R. Liang, “Carbon nanotube integrated multifunctional multiscale composites,” Nanotecnol. 18, 275708–275718 (2007).

    Article  Google Scholar 

  77. V. C. S. Chandrasekaran, S. G. Advani, and M. H. Santare, “Role of processing on interlaminar shear strength enhancement of epoxy/glass fiber/multi-walled carbon nanotube hybrid composites,” Carbon 48, 3692–3699 (2010).

    Article  CAS  Google Scholar 

  78. Z. Fan, K.-T. Hsiao, and S. G. Advani, “Experimental investigation of dispersion during flow of multi-walled carbon nanotube/polymer suspension in fibrous porous media,” Carbon 42(4), 871–876 (2004).

    Article  CAS  Google Scholar 

  79. Z. Fan, W. Tang, K.-T. Hsiao, and S. G. Advani, “Flow and dispersion of multiwalled carbon nanotubes in polymer and fiberglass reinforced polymer composites,” Proc. 2004 NSF Design, Service and Manufacturing Grantees and Research Conf. (Dallas, Jan. 5–8, 2004).

  80. K.-T. Hsiao, “Manufacturing of functionally graded hybrid carbon nanotube/fiber glass composites,” Report at University of South Alabama Research Council (USARC) (June 30, 2005).

    Google Scholar 

  81. K.-T. Hsiao, S. Sadeghian, and G. Sudhir, “Manufacturing and characterization of hybrid carbon nanofibers-glass fibers polymer composites,” in Proc. 12th Annu. USA Research Forum (Univ. of South Alabama, Apr. 11–15, 2005).

    Google Scholar 

  82. R. Sadeghian, S. Gangireddy, B. Minaie, and K.-T. Hsiao, “Model delamination characterization for carbon nanofibers toughened polyester/glassfiber composites,” in Proc. 50th Int. Society for Advancement of Material and Process Engineering (SAMPE) Symp. and Exhibition (Long Beach, CA, May 1–5, 2005).

    Google Scholar 

  83. L. Gorbatikh, S. V. Lomov, and I. Verpoest, Nanoengineered composites: a multiscale approach for adding toughness to fibre reinforced composites,” Proc. Eng. 10, 3252–3258 (2011).

    Article  CAS  Google Scholar 

  84. F. Inam, D. W. Y. Wong, M. Kuwata, and T. Peijs, “Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers,” J. Nanomater., 453420–453431 (2010).

    Google Scholar 

  85. E. J. Garcia, B. L. Wardle, and A. J. Hart, “Joining prepreg composite interfaces with aligned carbon nanotubes,” Composites Part A 39, 1065–1070 (2008).

    Article  Google Scholar 

  86. Y. Huang, N. Li, Y. Ma, F. Du, F. Li, X. He, X. Lin, H. Gao, and Y. Chen, “The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites,” Carbon 45(8), 1614–1621 (2007).

    Article  CAS  Google Scholar 

  87. Z. Wang, Z. Liang, B. Wang, C. Zhang, and L. Kramer, “Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites,” Composites Part A 35, 1225–1232 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Kablov.

Additional information

Original Russian Text © E.N. Kablov, S.V. Kondrashov, G.Yu. Yurkov, 2013, published in Rossiiskie Nanotekhnologii, 2013, Vol. 8, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kablov, E.N., Kondrashov, S.V. & Yurkov, G.Y. Prospects of using carbonaceous nanoparticles in binders for polymer composites. Nanotechnol Russia 8, 163–185 (2013). https://doi.org/10.1134/S1995078013020080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078013020080

Keywords

Navigation