Skip to main content
Log in

Investigation of the kinetics of insulin amyloid fibrils formation

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Today, the investigation of the structure of ordered protein aggregates-amyloid fibrils, the influence of the native structure of the protein and the external conditions on the process of fibrillation-is the subject of intense investigations. The aim of the present work is to study the kinetics of formation of insulin amyloid fibrils at low pH values (conditions that are used at many stages of the isolation and purification of the protein) using the fluorescent probe thioflavin T. It is shown that the increase of the fluorescence intensity of ThT during the formation of amyloid fibrils is described by a sigmoidal curve, in which three areas can be distinguished: the lag phase, growth, and a plateau, which characterize the various stages of fibril formation. Despite the variation in the length of the lag phase at the same experimental conditions (pH and temperature), it is seen to drop during solution stirring and seeding. Data obtained by electron microscopy showed that the formed fibrils are long, linear filaments ∼20 nm in diameter. With increasing incubation time, the fibril diameter does not change, while the length increases to 2–3 μm, which is accompanied by a significant increase in the number of fibril aggregates. All the experimental data show that, irrespective of the kinetics of formation of amyloid fibrils, their properties after the completion of the fibrillation process are identical. The results of this work, together with the previous studies of insulin amyloid fibrils, may be important for clarification the mechanism of their formation, as well as for the treatment of amyloidosis associated with the aggregation of insulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, A., DnaK/DnaJ/GrpE of Hsp70 system have differing effects on alpha-synuclein fibrillation involved in Parkinson’s disease, Int. J. Biol. Macromol., 2010, vol. 4, pp. 275–279.

    Article  CAS  Google Scholar 

  • Ahmad, A., Millett, I.S., Doniach, S., Uversky, V.N., and Fink, A.L., Partially folded intermediates in insulin fibrillation, Biochemistry, 2003, vol. 42, pp. 11404–11416.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, A., Muzaffar, M., and Ingram, V.M., Ca(2+), within the physiological concentrations, selectively accelerates Abeta42 fibril formation and not Abeta40 in vitro, Biochim. Biophys. Acta, 2009, vol. 1794, pp. 1537–1548.

    Article  PubMed  CAS  Google Scholar 

  • Albert, S.G., Obadiah, J., Parseghian, S.A., Yadira Hurley, M., and Mooradian, A.D., Severe insulin resistance associated with subcutaneous amyloid deposition, Diabetes Res. Clin. Pract., 2007, vol. 75, pp. 374–376.

    Article  PubMed  Google Scholar 

  • Blundell, T.L., Insulin: the structure in the crystal and its reflection in chemistry and biology, Adv. Protein Chem., 1972, vol. 26, pp. 279–402.

    Article  CAS  Google Scholar 

  • Booth, D.R., Sunde, M., Bellotti, V., Robinson, C.V., Hutchinson, W.L., Fraser, P.E., Hawkins, P.N., Dobson, C.M., Radford, S.E., Blake, C.C., and Pepys, M.B., Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis, Nature, 1997, vol. 385, pp. 787–793.

    Article  PubMed  CAS  Google Scholar 

  • Dische, F.E., Wernstedt, C., Westermark, G.T., Westermark, P., Pepys, M.B., Rennie, J.A., Gilbey, S.G., and Watkins, P.J., Insulin as an amyloid-fibril protein at sites of repeated insulin injections in a diabetic patient, Diabetologia, 1988, vol. 31, pp. 158–161.

    Article  PubMed  CAS  Google Scholar 

  • Goers, J., Permyakov, S.E., Permyakov, E.A., Uversky, V.N., and Fink, A.L., Conformational prerequisites for alpha-lactalbumin fibrillation, Biochemistry, 2002, vol. 41, pp. 12546–12551.

    Article  PubMed  CAS  Google Scholar 

  • LeVine, H., III, Quantification of beta-sheet amyloid fibril structures with thioflavin T, Methods Enzymol., 1999, vol. 309, pp. 274–284.

    Article  PubMed  CAS  Google Scholar 

  • LeVine, H., III, Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: detection of amyloid aggregation in solution, Protein Sci., 1993, vol. 2, pp. 404–410.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li, J., Uversky, V.N., and Fink, A.L., Conformational behavior of human alpha-synuclein is modulated by familial Parkinson’s disease point mutations A30P and A53T, Neurotoxicology, 2002, vol. 23, pp. 553–567.

    Article  PubMed  CAS  Google Scholar 

  • Maskevich, A.A., Stsiapura, V.I., Kuzmitsky, V.A., Kuznetsova, I.M., Povarova, O.I., Uversky, V.N., and Turoverov, K.K., Spectral properties of thioflavin T in solvents with different dielectric properties and in a fibril-incorporated form, J. Proteome Res., 2007, vol. 6, pp. 1392–1401.

    Article  PubMed  CAS  Google Scholar 

  • Munishkina, L.A., Ahmad, A., Fink, A.L., and Uversky, V.N., Guiding protein aggregation with macromolecular crowding, Biochemistry, 2008, vol. 47, pp. 8993–9006.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nielsen, L., Khurana, R., Coats, A., Frokjaer, S., Brange, J., Vyas, S., Uversky, V.N., and Fink, A.L., Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism, Biochemistry, 2001, vol. 40, pp. 6036–6046.

    Article  PubMed  CAS  Google Scholar 

  • Sahoo, S., Reeves, W., and DeMay, R.M., Amyloid tumor: a clinical and cytomorphologic study, Diagn. Cytopathol., 2003, vol. 28, pp. 325–328.

    Article  PubMed  Google Scholar 

  • Shikama, Y., Kitazawa, J., Yagihashi, N., Uehara, O., Murata, Y., Yajima, N., Wada, R., and Yagihashi, S., Localized amyloidosis at the site of repeated insulin injection in a diabetic patient, Intern. Med., 2010, vol. 49, pp. 397–401.

    Article  PubMed  Google Scholar 

  • Sluzky, V., Tamada, J.A., Klibanov, A.M., and Langer, R., Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 9377–9381.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Souillac, P.O., Uversky, V.N., Millett, I.S., Khurana, R., Doniach, S., and Fink, A.L., Elucidation of the molecular mechanism during the early events in immunoglobulin light chain amyloid fibrillation. Evidence for an off-pathway oligomer at acidic pH, J. Biol. Chem., 2002, vol. 277, pp. 12666–12679.

    Article  PubMed  CAS  Google Scholar 

  • Storkel, S., Schneider, H.M., Muntefering, H., and Kashiwagi, S., Iatrogenic, insulin-dependent, local amyloidosis, Lab. Invest., 1983, vol. 48, pp. 108–111.

    PubMed  CAS  Google Scholar 

  • Sulatskaya, A.I. and Kuznetsova, I.M., Thioflavin T interaction with amyloid fibrils as an instrument for their studying, Tsitologiia, 2010, vol. 52, no. 11, pp. 955–959.

    CAS  Google Scholar 

  • Sulatskaya, A.I., Kuznetsova, I.M., and Turoverov, K.K., Interaction of thioflavin T with amyloid fibrils: stoichiometry and affinity of dye binding, absorption spectra of bound dye, J. Phys. Chem. B, 2011, vol. 115, pp. 11519–11524.

    Article  PubMed  CAS  Google Scholar 

  • Sulatskaya, A.I., Kuznetsova, I.M., and Turoverov, K.K., Interaction of thioflavin T with amyloid fibrils: fluorescence quantum yield of bound dye, J. Phys. Chem. B, 2012, vol. 116, pp. 2538–2544.

    Article  PubMed  CAS  Google Scholar 

  • Sulatskaya, A.I., Maskevich, A.A., Kuznetsova, I.M., Uversky, V.N., and Turoverov, K.K., Fluorescence quantum yield of thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils, PLoS One, 2010, vol. 5, p. e15385.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Swift, B., Examination of insulin injection sites: an unexpected finding of localized amyloidosis, Diabet. Med., 2002, vol. 19, pp. 881–882.

    Article  PubMed  CAS  Google Scholar 

  • Uversky, V.N., Li, J., and Fink, A.L., Evidence for a partially folded intermediate in alpha-synuclein fibril formation, J. Biol. Chem., 2001, vol. 276, pp. 10737–10744.

    Article  PubMed  CAS  Google Scholar 

  • Vladimirov, Yu.A., and Litvin, F.F., Fotobiologiya i spektral’nye metody issledovaniya (Photobiology and Spectral Research Methods), Moscow: Vysshaya shkola, 1964.

    Google Scholar 

  • Wild, S., Roglic, G., Green, A., Sicree, R., and King, H., Global prevalence of diabetes: estimates for the year 2000 and projections for 2030, Diabetes Care, 2004, vol. 27, pp. 1047–1053.

    Article  PubMed  Google Scholar 

  • Yumlu, S., Barany, R., Eriksson, M., and Rocken, C., Localized insulin-derived amyloidosis in patients with diabetes mellitus: a case report, Hum. Pathol., 2009, vol. 40, pp. 1655–1660.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Sulatskaya.

Additional information

Original Russian Text © A.I. Sulatskaya, E.A. Volova, Ya.Yu. Komissarchik, E.S. Snigirevskaya, A.A. Maskevich, E.A. Drobchenko, I.M. Kuznetsova, K.K. Turoverov, 2013, published in Tsitologiya, 2013, Vol. 55, No. 11, pp. 809–814.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulatskaya, A.I., Volova, E.A., Komissarchik, Y.Y. et al. Investigation of the kinetics of insulin amyloid fibrils formation. Cell Tiss. Biol. 8, 186–191 (2014). https://doi.org/10.1134/S1990519X14020114

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X14020114

Keywords

Navigation