Cell and Tissue Biology

, Volume 1, Issue 5, pp 375–383

Human embryonic stem cells: Problems and perspectives


DOI: 10.1134/S1990519X0705001X

Cite this article as:
Nikolskii, N.N., Gabai, I.A. & Somova, N.V. Cell Tiss. Biol. (2007) 1: 375. doi:10.1134/S1990519X0705001X


Generation of human embryonic stem cell lines is one of the most important achievements in biological science in the 20th century. It has excited a wide scientific and social response, as embryonic stem cells (ESC) may, in the future, be regarded as an unlimited source of transplantation materials for replacement cell therapy. ESC lines are derived, cultured, inner cell mass from human blastocysts is used in the in vitro fertilization procedure. To date, human embryonic cell lines have been obtained in more than 20 countries. In our country, embryonic stem cell research is carried out in the Institute of Cytology, Russian Academy of Sciences and the Institute of Gene Biology, Russian Academy of Sciences. Studies with human ESC go in several directions. Much attention is paid to finding the most optimal conditions for ESC cultivation, mainly to the development of cultivation techniques excluding animal feeder cells and other components of animal origin. Another direction is a large-scale analysis of gene expression specific to the embryonic state of cells and the corresponding signaling pathways. Great efforts are being focused on the directed differentiation of ESC into various tissue-specific cells. It has been shown that in vitro ESC are able to differentiate into virtually any somatic cells. Works are in progress to develop methods for “therapeutic cloning,” i.e. the transfer of somatic nuclei into enucleated oocytes or embryonic stem cell cytoblasts and their reactivation. Of great importance is the standardization of the human ESC lines. However, standard requirements for cells utilized for research or therapeutic purposes may be different. It has been found that many permanent human ESC lines underwent genetic and epigenetic variations. Therefore, the cell line genetic stability should be periodically verified. The main purpose of the review is to provide a detailed consideration of research on the genetic stability of human and mouse ESC lines. Human ESC lines established both in our country and others could not thus far be used in clinical practice. It is highly probable that undifferentiated ESCs cannot be applied for therapeutic purposes, as there is a risk of their malignant transformation. Therefore, main efforts should be focused on the production ESC progenitor and highly differentiated cells suitable for transplantation.

Key words

human embryonic stem cells permanent human ESC lines genetic stability mouse embryonic stem cells 

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Institute of CytologyRASSt. PetersburgRussia

Personalised recommendations