Skip to main content
Log in

Optimization of the synthesis and study of stable aqueous dispersions of silver nanoparticles used in medicine

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Using chemical reduction, silver nanoparticle hydrosols were obtained and studied in a wide range of ratios of the initial reagents-NaBH4: AgNO3 from 0.1 to 10 and AOT: AgNO3 from 0 to 1—where AOT is dioctyl sulfosuccinate sodium salt. Silver hydrosols are studied using transmission electron microscopy, dynamic light scattering, UV spectroscopy, and ionometry. The optimal ratios of the initial reagents are determined, which make it possible to obtain samples with a narrow particle size distribution of 2 to 20 nm and average size of silver nanoparticles of 10 nm. The samples synthesized are stable over an extended period of time (up to six months) and contain an insignificant amount of ionic silver, which makes them useful for application in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golubeva, O.Yu., Shamova, O.V., Orlova, D.S., Pazina, T.Yu., Boldina, A.S., and Kokryakov, V.N., Investigation of antimicrobial and hemolytic activities of silver nanoparticles prepared by the chemical reduction method, Glass Phys. Chem., 2010, vol. 3, no. 5, pp. 628–634.

    Article  Google Scholar 

  2. Chandra, G., Ghosh, K.S., Dasgupta, S., and Roy, A., Evidence of conformational changes in absorbed lysozyme molecule on silver colloids, Int. J. Biol. Macromol., 2010, vol. 47, no. 3, pp. 361–365.

    Article  CAS  Google Scholar 

  3. Qun Huo, A perspective on bioconjugated nanoparticles and quantum dots, Colloids Surf., B, 2007, vol. 59, no. 1, pp. 1–10.

    Article  CAS  Google Scholar 

  4. Sarkar, S., Jana, A.D., Samanta, S.K., and Mostafa, G., Facile synthesis of silver nano-particles with highly efficient anti-microbial property, Polyhedron, 2007, vol. 26, no. 15, pp. 4419–4426.

    Article  CAS  Google Scholar 

  5. Espinosa-Cristobal, L.F., Martinez-Castanon, G.A., Martinez-Martinez, R.E., Loyola-Rodriguez, J.P., Patino-Marin, N., Reyes-Macias, J.F., and Facundo, R., Antimicrobial sensibility of streptococcus mutans serotypes to silver nanoparticles, Mater. Sci. Eng., C, 2012, vol. 32, no. 4, pp. 896–901.

    Article  CAS  Google Scholar 

  6. Martinez-Gutierrez, F., Olive, P.L., Banuelos, A., Orrantia, E., Nino, N., Sanchez, E.M., Ruiz, F., Bach, H., and Av-Gay, Y., Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles, Nanomed.: Nanotechnol., Biol. Med., 2010, vol. 6, no. 5, pp. 681–688.

    CAS  Google Scholar 

  7. Prucek, R., Kvitek, L., and Hrbac, J., Silver colloidsmethods of preparation and utilization, Acta Univ. Palacki. Olomuc., Fac. Rerum. Nat., Mathematica, 2004, vol. 43, pp. 56–68.

    Google Scholar 

  8. Murphy, C.J., Sau, T.K., Gole, A.M., Orendorff, C.J., Gao, J., Gou, L., Hunyadi, S.E., and Li, T., Anisotropic metal nanoparticles: synthesis, assembly, and optical application, J. Phys. Chem. B, 2005, vol. 109, no. 29, pp. 13857–13870.

    Article  CAS  Google Scholar 

  9. Cumberland, S.A. and Lead, J.R., Particle size distributions of silver nanoparticles at environmentally relevant conditions, J. Chromatogr. A, 2009, vol. 1216, no. 52, pp. 9099–9105.

    Article  CAS  Google Scholar 

  10. Ershov, B.G., Metal nanoparticles in aqueous solutions: electronic, optical, and catalytic properties, Ross. Khim. Zh., 2001, vol. 45, no. 3, pp. 20–30.

    CAS  Google Scholar 

  11. Chhatre, A., Solasa, P., Sakle, S., Thaokar, R., and Mehra, A., Color and surface plasmon effects in nanoparticle systems: Case of silver nanoparticles prepared by microemulsion route, Colloids Surf., A, 2012, vol. 404, pp. 83–92.

    Article  CAS  Google Scholar 

  12. Egorova, E.M. and Revina, A.A., Optical properties and sizes of silver nanoparticles in micellar solutions, Colloid J., 2002, vol. 64, no. 3, pp. 301–311.

    Article  CAS  Google Scholar 

  13. Zhang, W., Qiao, X., Chen, J., and Wang, H., Preparation of silver nanoparticles in water-in-oil AOT reverse micelles, J. Colloid Interface Sci., 2006, vol. 302, no. 1, pp. 370–373.

    Article  CAS  Google Scholar 

  14. Zhang, W., Qiao, X., Chen, J., and Wang, H., Synthesis of silver nanoparticles-Effects of concerned parameters in water/oil microemulsion, Mater. Sci. Eng., B, 2007, vol. 142, no. 1, pp. 1–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yakovlev.

Additional information

Original Russian Text © A.V. Yakovlev, O.Yu. Golubeva, 2013, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakovlev, A.V., Golubeva, O.Y. Optimization of the synthesis and study of stable aqueous dispersions of silver nanoparticles used in medicine. Glass Phys Chem 39, 643–648 (2013). https://doi.org/10.1134/S1087659613060102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659613060102

Keywords

Navigation