Skip to main content
Log in

Microstructure, elastic, and inelastic properties of biomorphic carbons carbonized using a Fe-containing catalyst

Physics of the Solid State Aims and scope Submit manuscript

Abstract

The microstructure and amplitude dependences of the Young’s modulus E and internal friction (logarithmic decrement δ), and microplastic properties of biocarbon matrices BE-C(Fe) obtained by beech tree carbonization at temperatures T carb = 850–1600°C in the presence of an iron-containing catalyst are studied. By X-ray diffraction analysis and transmission electron microscopy, it is shown that the use of Fe-catalyst during carbonization with T carb ≥ 1000°C leads to the appearance of a bulk graphite phase in the form of nanoscale bulk graphite inclusions in a quasi-amorphous matrix, whose volume fraction and size increase with T carb. The correlation of the obtained dependences E(Т carb) and δ(T carb) with microstructure evolution with increasing Т carb is revealed. It is found that E is mainly defined by a crystalline phase fraction in the amorphous matrix, i.e., a nanocrystalline phase at Т carb < 1150°C and a bulk graphite phase at T carb > 1300°C. Maximum values E = 10–12 GPa are achieved for samples with Т carb ≈ 1150 and 1600°C. It is shown that the microplasticity manifest itself only in biocarbons with T carb ≥ 1300°C (upon reaching a significant volume of the graphite phase); in this case, the conditional microyield stress decreases with increasing total volume of introduced mesoporosity (free surface area).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. L. Zhang and X. S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).

    Article  Google Scholar 

  2. E. Frackowiak and F. Beguin, Carbon 39, 937 (2001).

    Article  Google Scholar 

  3. P. Simon and Yu. Gogotsi, Nat. Mater. 7, 845 (2008).

    Article  ADS  Google Scholar 

  4. M. V. Lebedeva, P. M. Yeletsky, A. B. Ayupov, A. N. Kuznetsov, V. A. Yakovlev, and V. N. Parmon, Mater. Renewable Sustainable Energy 4, 20 (2015).

    Article  Google Scholar 

  5. R. K. Gupta, M. Dubey, P. Kharel, Zh. Gu, and Q. H. Fan, J. Power Sources 274, 1300 (2015).

  6. A. B. Fuertes, G. Lota, T. A. Centeno, and E. Frackowiak, Electrochim. Acta 50, 2799 (2005).

    Article  Google Scholar 

  7. P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998).

    Article  Google Scholar 

  8. P. Greil, J. Eur. Ceram. Soc. 21, 105 (2001).

    Article  Google Scholar 

  9. V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano Lopez, and J. Martinez-Fernandez, Mater. Sci. Eng., A 428, 225 (2006).

    Article  Google Scholar 

  10. C. Zollfrank and H. Siber, J. Eur. Ceram. Soc. 24, 495 (2004).

    Article  Google Scholar 

  11. C. E. Byrne and D. C. Nagle, Carbon 35, 267 (1997).

    Article  Google Scholar 

  12. V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martínez-Fernández, Phys. Solid State 53 (2), 276 (2011).

    Article  ADS  Google Scholar 

  13. V. V. Popov, T. S. Orlova, and J. Ramirez-Rico, Phys. Solid State 51 (11), 2247 (2009).

    Article  ADS  Google Scholar 

  14. I. A. Smirnov, B. I. Smirnov, T. S. Orlova, Cz. Sulkovski, H. Misiorek, A. Jezowski, and J. Mucha, Phys. Solid State 53 (11), 2244 (2011).

    Article  ADS  Google Scholar 

  15. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, and M. C. Vera, Phys. Solid State 53 (11), 2398 (2011).

    Article  ADS  Google Scholar 

  16. N. F. Kartenko, T. S. Orlova, L. S. Parfen’eva, B. I. Smirnov, and I. A. Smirnov, Phys. Solid State 56 (11), 2348 (2014).

    Article  ADS  Google Scholar 

  17. A. Gutierrez-Pardo, J. Ramirez-Rico, R. Cabezas- Rodriguez, and J. Martinez-Fernandez, J. Power Sources 278, 18 (2015).

    Article  ADS  Google Scholar 

  18. A. Gutierrez-Pardo, Tesisdoctoral (Universidad de Sevilla, Sevilla, Spain), ES41080.

  19. A. Gutierrez-Pardo, J. Ramirez-Rico, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, J. Mater. Sci. 49, 7688 (2014).

    Article  ADS  Google Scholar 

  20. M. T. Johnson and K. T. Faber, J. Mater. Res. 26, 18 (2011).

    Article  ADS  Google Scholar 

  21. V. V. Popov, T. S. Orlova, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 57 (9), 1746 (2015).

    Article  ADS  Google Scholar 

  22. J. Ramirez-Rico, A. Gutierrez-Pardo, J. Martinez-Fernandez, V. V. Popov, and T. S. Orlova, Mater. Des. 99, 528 (2016).

    Google Scholar 

  23. T. S. Orlova, L. S. Parfen’eva, B. I. Smirnov, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 58 (1), 208 (2016).

    Article  ADS  Google Scholar 

  24. B. K. Kardashev, T. S. Orlova, B. I. Smirnov, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 55 (9), 1884 (2013).

    Article  ADS  Google Scholar 

  25. V. V. Shpeizman, T. S. Orlova, B. I. Smirnov, A. Gutierrez-Pardo, and J. Ramirez-Rico, Mater. Phys. Mech. 21, 200 (2014).

    Google Scholar 

  26. T. S. Orlova, B. K. Kardashev, B. I. Smirnov, A. Gutierrez-Pardo, J. Ramirez-Rico, and J. Martinez-Fernandez, Phys. Solid State 57 (3), 586 (2015).

    Article  ADS  Google Scholar 

  27. V. V. Shpeizman, T. S. Orlova, B. I. Smirnov, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 58 (4), 703 (2016).

    Article  ADS  Google Scholar 

  28. S. P. Nikanorov and B. K. Kardashev, Elasticity and Dislocation Inelasticity of Crystals (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  29. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52 (6), 1115 (2010).

    Article  ADS  Google Scholar 

  30. A. K. Kercher and D. C. Nagle, Carbon 41, 15 (2003).

    Article  Google Scholar 

  31. B. I. Smirnov, Yu. A. Burenkov, B. K. Kardashev, D. Singh, K. C. Goretta, and A. R. de Arellano-Lopez, Phys. Solid State 43 (11), 2094 (2001).

    Article  ADS  Google Scholar 

  32. B. K. Kardashev, T. S. Orlova, B. I. Smirnov, T. E. Wilkes, and K. T. Faber, Phys. Solid State 51 (12), 2463 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Orlova.

Additional information

Original Russian Text © T.S. Orlova, B.K. Kardashev, B.I. Smirnov, A. Gutierrez-Pardo, J. Ramirez-Rico, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 12, pp. 2393–2399.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlova, T.S., Kardashev, B.K., Smirnov, B.I. et al. Microstructure, elastic, and inelastic properties of biomorphic carbons carbonized using a Fe-containing catalyst. Phys. Solid State 58, 2481–2487 (2016). https://doi.org/10.1134/S1063783416120234

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416120234

Navigation