Skip to main content
Log in

Formation of different surface reliefs of metallic glasses under mechanical stress

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The micro- and nanoreliefs of loaded lateral surfaces and fracture surfaces of foils of the Fe77Ni1Si9B13, Fe58Ni20Si9B13, and Fe70Cr15B15 amorphous alloys have been investigated using scanning tunneling and atomic force microscopy. The isotropic and anisotropic surface reliefs have been examined. The fractal dimensions of the surfaces of loaded specimens and the fracture surfaces along and across the direction of crack propagation have been estimated using the box counting method. Fractal characteristics of the surfaces, such as the Hölder exponent and the half-width of the singularity spectrum, have been calculated using the wavelet transform method. It has been found that, on the topographies with a clearly pronounced anisotropy of the relief, the surface is fractal in only one direction, and the surface is fractal in two directions on the topographies with a less pronounced anisotropy of the relief. The fractal characteristics of the lateral surfaces and the fracture surfaces with allowance made for their anisotropy have close values. It has been shown that the formation of two types of fracture surfaces is adequately described in terms of the model of a cellular automaton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Thomson and L. E. Levine, Phys. Rev. Lett. 81, 3884 (1998).

    Article  ADS  Google Scholar 

  2. R. Thomson, L. E. Levine, and D. Stauffer, Physica A (Amsterdam) 283, 307 (2000).

    Article  ADS  Google Scholar 

  3. A. Vinogradov, I. S. Yasnikov, and Y. Estrin, Phys. Rev. Lett. 108, 205504 (2012).

    Article  ADS  Google Scholar 

  4. L. E. Levine and R. Thomson, Mater. Sci. Eng., A 400–401, 202 (2005).

    Google Scholar 

  5. G. A. Malygin, Phys. Solid State 43(2), 257 (2001).

    Article  ADS  Google Scholar 

  6. P. Hähner, K. Bay, and M. Zaiser, Phys. Rev. Lett. 81, 2470 (1998).

    Article  ADS  Google Scholar 

  7. M. Zaiser, F. Madani, V. Koutsos, and E. C. Aifantis, Phys. Rev. Lett. 93, 195507 (2004).

    Article  ADS  Google Scholar 

  8. D. E. Kramer, M. F. Savage, and L. E. Levine, Acta Mater. 53, 4655 (2005).

    Article  Google Scholar 

  9. M. Cai, L. E. Levine, S. C. Langford, and J. T. Dickinson, Mater. Sci. Eng., A 400–401, 476 (2005).

    Google Scholar 

  10. A. M. Gleizer and I. E. Permyakova, Nanocrystals Quenched from the Melt (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  11. K. Suzuki, H. Fujimori, and K. Hashimoto, Amorphous Metals (Butterworths, London, 1982; Metallurgiya, Moscow, 1987).

    Google Scholar 

  12. V. I. Betekhtin, A. G. Kadomtsev, and O. V. Tolochko, Phys. Solid State 43(10), 1892 (2001).

    Article  ADS  Google Scholar 

  13. V. I. Betekhtin, P. N. Butenko, A. G. Kadomtsev, V. E. Korsukov, M. M. Korsukova, B. A. Obidov, and O. V. Tolochko, Phys. Solid State 49(12), 2223 (2007).

    Article  ADS  Google Scholar 

  14. V. I. Betekhtin, P. N. Butenko, V. L. Hilarov, A. G. Kadomtsev, V. E. Korsukov, M. M. Korsukova, and B. A. Obidov, Phys. Solid State 50(10), 1875 (2008).

    Article  ADS  Google Scholar 

  15. G. E. Abrosimova, A. S. Aronin, S. V. Dobatkin, I. I. Zver’kova, D. V. Matveev, O. G. Rybchenko, and E. V. Tat’yanin, Phys. Solid State 49(6), 1034 (2007).

    Article  ADS  Google Scholar 

  16. V. L. Hilarov, V. E. Korsukov, P. N. Butenko, and I. N. Svetlov, Phys. Solid State 46(10), 1868 (2004).

    Article  ADS  Google Scholar 

  17. V. I. Betekhtin, V. L. Gilyarov, A. G. Kadomtsev, V. E. Korsukov, M. M. Korsukova, and B. A. Obidov, Bull. Russ. Acad. Sci.: Phys. 73(10), 1419 (2009).

    Article  Google Scholar 

  18. V. L. Hilarov, Phys. Solid State 47(5), 832 (2005).

    Article  ADS  Google Scholar 

  19. V. R. Regel’, A. I. Slutsker, and E. E. Tomashevskii, Kinetic Nature of the Strength of Solids (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  20. A. A. Griffith, Philos. Trans. R. Soc. London, Ser. A 221, 163 (1921).

    Article  ADS  Google Scholar 

  21. J. Feder, Fractals (Plenum, New York, 1988; Mir, Moscow, 1991).

    MATH  Google Scholar 

  22. V. L. Hilarov, M. S. Varkentin, V. E. Korsukov, M. M. Korsukova, and V. S. Kuksenko, Phys. Solid State 52(7), 1404 (2010).

    Article  ADS  Google Scholar 

  23. V. L. Hilarov, Phys. Solid State 53(4), 758 (2011).

    Article  ADS  Google Scholar 

  24. F. Arneodo and J. E. Bacry, Physica A (Amsterdam) 213, 232 (1995).

    Article  ADS  Google Scholar 

  25. G. G. Malinetskii and S. P. Kurdyumov, Herald Russ. Acad. Sci. 71(2), 94 (2001).

    Google Scholar 

  26. V. R. Regel’ and A. I. Slutsker, Soros. Obraz. Zh., No. 8, 8686 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Korsukov.

Additional information

Original Russian Text © V.E. Korsukov, V.I. Betekhtin, M.S. Varkentin, V.L. Hilarov, A.G. Kadomtsev, M.M. Korsukova, B. A Obidov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 4, pp. 729–735.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korsukov, V.E., Betekhtin, V.I., Varkentin, M.S. et al. Formation of different surface reliefs of metallic glasses under mechanical stress. Phys. Solid State 55, 796–802 (2013). https://doi.org/10.1134/S106378341304015X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341304015X

Keywords

Navigation