Skip to main content
Log in

Vacancies and their complexes in FCC metals

  • Defects and Impurity Centers, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The formation energies of vacancies and their complexes in copper and nickel at zero and finite temperatures are calculated by the embedded-atom method in the quasi-harmonic approximation. The role of temperature effects in the formation of various atomic configurations of intrinsic point defects is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Avdyukhina, A. A. Anishchenko, A. A. Katsnel’son, and G. P. Revkevich, Perspekt. Mater., No. 4, 5 (2002).

  2. V. M. Avdyukhina, A. A. Katsnel’son, and G. P. Revkevich, Kristallografiya 44(1), 49 (1999) [Crystallogr. Rep. 44 (1), 44 (1999)].

    Google Scholar 

  3. P. Zhao and Y. Shimomura, Comput. Mater. Sci. 14, 84 (1999).

    Article  Google Scholar 

  4. N. Tajima, O. Takai, Y. Kogure, and M. Doyama, Comput. Mater. Sci. 14, 152 (1999).

    Article  Google Scholar 

  5. H. Deng and D. J. Bacon, Phys. Rev. B: Condens. Matter 48, 10022 (1993).

    Google Scholar 

  6. K. J. Morishita, J. Nucl. Mater. 283–287, 753 (2000).

    Article  Google Scholar 

  7. S. M. Foiles, Phys. Rev. B: Condens. Matter 49, 14930 (1994).

    Google Scholar 

  8. N. Sandberg and G. Grimvall, Phys. Rev. B: Condens. Matter 63, 184109 (2001).

    Google Scholar 

  9. K. A. Putilov, Thermodynamics (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  10. N. Ashcroft and N. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976; Mir, Moscow, 1979), Vol. 2.

    Google Scholar 

  11. A. G. Lipnitskiĭ, S. D. Borisova, I. P. Chernov, and L. Yu. Zagorskaya, Fiz. Mezomekh. 6, 93 (2003).

    Google Scholar 

  12. M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Article  ADS  Google Scholar 

  13. M. S. Daw and M. I. Baskes, Phys. Rev. B: Condens. Matter 29, 6443 (1984).

    ADS  Google Scholar 

  14. Y. Mishin, Phys. Rev. B: Condens. Matter 63, 224106 (2001).

    Google Scholar 

  15. A. C. Damask, G. J. Dienes, and V. G. Weizer, Phys. Rev. 113, 781 (1959).

    Article  ADS  Google Scholar 

  16. J.-E. Kluin, Philos. Mag. A 65, 1263 (1992).

    Google Scholar 

  17. T. Hoshino, N. Papanikolaou, R. Zeller, P. H. Dederichs, M. Asato, T. Asada, and N. Stefanou, Comput. Mater. Sci. 14, 56 (1999).

    Article  Google Scholar 

  18. B.-J. Lee, J.-H. Shim, and M. I. Baskes, Phys. Rev. B: Condens. Matter 68, 144112 (2003).

    Google Scholar 

  19. S. V. Eremeev, A. G. Lipnitskiĭ, A. I. Potekaev, and E. V. Chulkov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 62 (1997).

  20. T. Korhonen, M.J. Puska, and R. M. Nieminen, Phys. Rev. B: Condens. Matter 51, 9526 (1995).

    ADS  Google Scholar 

  21. H. M. Polatoglou, M. Methfesseel, and M. Scheffler, Phys. Rev. B: Condens. Matter 48, 1877 (1993).

    ADS  Google Scholar 

  22. B. Drittler, M. Weinert, R. Zeller, and P. H. Dederichs, Solid State Commun. 79, 31 (1991).

    Article  Google Scholar 

  23. G. J. Ackland, G. Tichy, V. Vitek, and M. W. Finnis, Philos. Mag. A 56, 735 (1987).

    Google Scholar 

  24. P. Ehrhart, P. Jung, H. Schultz, and H. Ullmaier, in Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series: Group III. Crystal and Solid State Physics (Springer, Berlin, 1991).

    Google Scholar 

  25. R. W. Balluffi, J. Nucl. Mater. 69–70, 240 (1978).

    Article  Google Scholar 

  26. W. Schule, Z. Metallkd. 89, 672 (1998).

    Google Scholar 

  27. S. V. Eremeev, A. G. Lipnitskiĭ, A. I. Potekaev, and E. V. Chulkov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 83 (1997).

  28. L. Zhao, R. Najafabadi, and D. J. Srolovitz, Modell. Simul. Mater. Sci. Eng. 1, 539 (1993).

    Article  ADS  Google Scholar 

  29. W. Wycisk and M. Feller-Kniepmeier, J. Nucl. Mater. 69–70, 616 (1978).

    Article  Google Scholar 

  30. O. Bender and P. Ehrhart, Point Defects and Defect Interactions in Metals (North-Holland, Amsterdam, 1982), p. 639.

    Google Scholar 

  31. H.-E. Schaefer, Phys. Status Solidi A 102, 47 (1987).

    Article  Google Scholar 

  32. I. I. Novikov, Defects of the Crystalline Structure of Metals (Metallurgiya, Moscow, 1983) [in Russian].

    Google Scholar 

  33. Yu. N. Osetsky and D. J. Bacon, Nucl. Instrum. Methods Phys. Res., Sect B 202, 31 (2003).

    Article  ADS  Google Scholar 

  34. Yu. N. Osetsky and D. J. Bacon, Nucl. Instrum. Methods Phys. Res., Sect. B 180, 85 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.Yu. Nemirovich-Danchenko, A.G. Lipnitskiĭ, S.E. Kul’kova, 2007, published in Fizika Tverdogo Tela, 2007, Vol. 49, No. 6, pp. 1026–1032.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemirovich-Danchenko, L.Y., Lipnitskiĭ, A.G. & Kul’kova, S.E. Vacancies and their complexes in FCC metals. Phys. Solid State 49, 1079–1085 (2007). https://doi.org/10.1134/S1063783407060108

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783407060108

PACS numbers

Navigation