Skip to main content
Log in

Effect of nanobridges on the emission spectra of a quantum dot-quantum well tunneling pair

Semiconductors Aims and scope Submit manuscript

Abstract

Emission in the narrow spectral range 950–1000 nm is obtained at the nanobridge optical transition involving experimentally and theoretically observed hybrid states in the InGaAs system, i.e., quantum dot-nanobridge-quantum well. It is experimentally shown that the oscillator strength of the new transition sharply increases in the built-in electric field of a pin junction. In the mode of weak currents in the system under study, the nanobridge transition is the dominant electroluminescence channel. At current densities >10 A cm2, nanobridge “burning” is observed, after which the system becomes a “quasi-classical” quantum dot-quantum well tunneling pair separated by a barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. L. V. Asryan and S. Luryi, Solid State Electron. 47, 205 (2003).

    Article  ADS  Google Scholar 

  2. P. Bhattacharya and S. Ghosh, Appl. Phys. Lett. 80, 3482 (2002).

    Article  ADS  Google Scholar 

  3. P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, Z.-K. Wu, J. Urayama, K. Kim, and T. B. Norris, IEEE J. Quant. Electron. 39, 952 (2003).

    Article  ADS  Google Scholar 

  4. P. Bhattacharya and S. Fathpour, Appl. Phys. Lett. 86, 153109 (2005).

    Article  ADS  Google Scholar 

  5. V. G. Talalaev, J. W. Tomm, N. D. Zakharov, P. Werner, U. Gösele, B. V. Novikov, A. S. Sokolov, Y. B. Samsonenko, V. A. Egorov, and G. E. Cirlin, Appl. Phys. Lett. 93, 031105 (2008).

    Article  ADS  Google Scholar 

  6. V. G. Talalaev, A. V. Senichev, B. V. Novikov, J. W. Tomm, T. Elsaesser, N. D. Zakharov, P. Werner, U. Gosele, Yu. B. Samsonenko, and G. E. Cirlin, Semiconductors 44, 1050 (2010).

    Article  ADS  Google Scholar 

  7. V. G. Talalaev, A. A. Tonkikh, N. D. Zakharov, A. V. Senichev, J. W. Tomm, P. Werner, B. V. Novikov, L. V. Asryan, B. Fuhrmann, J. Schilling, H. S. Leipner, A. D. Buravlev, Yu. B. Samsonenko, A. I. Khrebtov, I. P. Soshnikov, and G. E. Cirlin, Semiconductors 46, 1460 (2012).

    Article  ADS  Google Scholar 

  8. V. G. Talalaev, A. V. Senichev, B. V. Novikov, J. W. Tomm, L. V. Asryan, N. D. Zakharov, P. Werner, A. D. Buravlev, Yu. B. Samsonenko, A. I. Khrebtov, I. P. Soshnikov, and G. E. Cirlin, Vestn. SPb. Univ., Ser. 4, No. 3, 34 (2012).

    Google Scholar 

  9. T. Tada, A. Yamaguchi, T. Ninomiya, H. Uchiki, T. Kobayashi, and T. Yao, J. Appl. Phys. 63, 5491 (1988).

    Article  ADS  Google Scholar 

  10. M. Nido, M. G. W. Alexander, and W. W. Ruehle, Appl. Phys. Lett. 56, 355 (1990).

    Article  ADS  Google Scholar 

  11. J. N. Zeng, I. Souma, Y. Amemiya, and Y. Oka, J. Surf. Anal. 3, 529 (1997).

    Google Scholar 

  12. R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, Phys. Rev. B 58, R10151 (1998).

    Article  ADS  Google Scholar 

  13. A. Tackeushi, T. Kuroda, K. Mase, Y. Nakata, and N. Yokovama, Phys. Rev. B 62, 1568 (2000).

    Article  ADS  Google Scholar 

  14. Y. I. Mazur, Z. M. Wang, G. G. Tarasov, G. J. Salamo, J. W. Tomm, and V. Talalaev, Phys. Rev. B 71, 235313 (2005).

    Article  ADS  Google Scholar 

  15. Y. Mazur, B. L. Liang, Z. M. Wang, D. Guzun, G. J. Salamo, Z. Y. Zhuchenko, and G. G. Tarasov, Appl. Phys. Lett. 98, 083118 (2006).

    Article  ADS  Google Scholar 

  16. Y. Mazur, V. G. Dorogan, E. Marega, Z. Y. Zhuchenko, M. E. Ware, M. Benamara, G. G. Tarasov, P. Vasa, C. Lienau, and G. J. Salamo, J. Appl. Phys. 108, 074316 (2010).

    Article  ADS  Google Scholar 

  17. P. N. Racec and L. I. Goray, WIAS Preprint No 1898 (2013); http://wias-berlin.de/publications/wias-publ/index.jsp?lang=1

    Google Scholar 

  18. A. V. Senichev, V. G. Talalaev, J. W Tomm, B. V. Novikov, P. Werner, and G. E. Cirlin, Phys. Status Solidi RRL 5, 385 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Talalaev.

Additional information

Original Russian Text © V.G. Talalaev, G.E. Cirlin, L.I. Goray, B.V. Novikov, M.E. Labzovskaya, J.W. Tomm, P. Werner, B. Fuhrmann, J. Schilling, P.N. Racec, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 9, pp. 1209–1216.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talalaev, V.G., Cirlin, G.E., Goray, L.I. et al. Effect of nanobridges on the emission spectra of a quantum dot-quantum well tunneling pair. Semiconductors 48, 1178–1184 (2014). https://doi.org/10.1134/S1063782614090218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614090218

Keywords

Navigation