Skip to main content
Log in

Tunnel injection and power efficiency of InGaN/GaN light-emitting diodes

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of studying the influence of the finite tunneling transparency of injection barriers in light-emitting diodes with InGaN/GaN quantum wells on the dependences of the current, capacitance, and quantum efficiency on the p-n junction voltage and temperature are presented. It is shown that defectassisted hopping tunneling is the main transport mechanism through the space charge region (SCR) and makes it possible to lower the injection barrier. It is shown that, in the case of high hopping conductivity through the injection barrier, the tunnel-injection current into InGaN band-tail states is limited only by carrier diffusion from neutral regions and is characterized by a close-to-unity ideality factor, which provides the highest quantum and power efficiencies. An increase in the hopping conductivity through the space charge region with increasing frequency, forward bias, or temperature has a decisive effect on the capacitance-voltage characteristics and temperature dependences of the high-frequency capacitance and quantum efficiency. An increase in the density of InGaN/GaN band-tail states and in the hopping conductivity of injection barriers is necessary to provide the high-level tunnel injection and close-to-unity power efficiency of high-power light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).

    Article  ADS  Google Scholar 

  2. P. Perlin, V. Iota, B. A. Weinstein, P. Wisniewski, T. Suski, P. G. Eliseev, and M. Osinski, Appl. Phys. Lett. 70, 2993 (1997).

    Article  ADS  Google Scholar 

  3. Y. Narukava, Y. Kavakami, S. Fujita, and S. Nakamura, Phys. Rev. B 59, 10283 (1999).

    Article  ADS  Google Scholar 

  4. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Yu. S. Lelikov, F. E. Latyshev, Yu. T. Rebane, A. I. Tsyuk, and Yu. G. Shreter, Semiconductors 44, 794 (2010).

    Article  ADS  Google Scholar 

  5. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, J. Phys. D: Appl. Phys. 43, 354002 (2010).

    Article  Google Scholar 

  6. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 34, L1332 (1995).

    Article  ADS  Google Scholar 

  7. T. Mukai, K. Takekava, and S. Nakamura, Jpn. J. Appl. Phys. 37, L839 (1996).

    Article  Google Scholar 

  8. N. I. Bochkareva, E. A. Zhirnov, A. A. Efremov, Yu. T. Rebane, R. I. Gorbunov, A. V. Klochkov, D. A. Lavrinovich, and Yu. G. Shreter, Semiconductors 39, 795 (2005).

    Article  ADS  Google Scholar 

  9. G. Meneghesso, S. Levada, E. Zanoni, S. Podda, G. Mura, M. Vanzi, A. Cavallini, A. Castaldini, S. Du, and I. Eliashevich, Phys. Status Solidi A 194, 389 (2002).

    Article  ADS  Google Scholar 

  10. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. Kim, B. Luo, R. Mehandru, F. Ren, K. P. Lee, S. J. Pearton, A. V. Osinsky, and P. E. Norris, J. Appl. Phys. 91, 5203 (2002).

    Article  ADS  Google Scholar 

  11. J. Hu, L. Yang, L. Kim, and M. W. Shin, Semicond. Sci. Technol. 22, 1249 (2007).

    Article  ADS  Google Scholar 

  12. N. I. Bochkareva, A. A. Efremov, Yu. T. Rebane, R. I. Gorbunov, A. V. Klochkov, and Yu. G. Shreter, Semiconductors 40, 118 (2006).

    Article  ADS  Google Scholar 

  13. H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).

    Article  ADS  Google Scholar 

  14. P. Perlin, M. Osinski, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas, and P. Sartori, Appl. Phys. Lett. 69, 1680 (1996).

    Article  ADS  Google Scholar 

  15. V. E. Kudryashov, A. N. Turkin, A. E. Yunovich, A. N. Kovalev, and F. I. Manyakhin, Semiconductors 33, 429 (1999).

    Article  ADS  Google Scholar 

  16. C. H. Qiu, C. Hoggatt, W. Melton, M. W. Leksono, and J. I. Pankove, Appl. Phys. Lett. 66, 2712 (1995).

    Article  ADS  Google Scholar 

  17. L. Balagurov and P. J. Chong, Appl. Phys. Lett. 68, 43 (1996).

    Article  ADS  Google Scholar 

  18. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).

    Google Scholar 

  19. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, F. E. Latyshev, Yu. S. Lelikov, Yu. T. Rebane, A. I. Tsyuk, and Yu. G. Shreter, Semiconductors 46, 1032 (2012).

    Article  ADS  Google Scholar 

  20. D. V. Lang, J. D. Cohen, and J. P. Harbison, Phys. Rev. B 25, 5285 (1982).

    Article  ADS  Google Scholar 

  21. J. D. Cohen and D. V. Lang, Phys. Rev. B 25, 5321 (1982).

    Article  ADS  Google Scholar 

  22. J. C. Dyre, J. Appl. Phys. 64, 2456 (1988).

    Article  ADS  Google Scholar 

  23. Don Monroe, Phys. Rev. Lett. 54, 146 (1985).

    Article  ADS  Google Scholar 

  24. P. Viktorovich and G. Model, J. Appl. Phys. 51, 4847 (1980).

    Article  ADS  Google Scholar 

  25. R. J. Molnar, T. Lei, and T. D. Moustakas, Appl. Phys. Lett. 62, 72 (1993).

    Article  ADS  Google Scholar 

  26. S. Yamasaki, S. Asami, N. Shibata, M. Koike, K. Manabe, T. Tanaka, H. Amano, and I. Akasaki, Appl. Phys. Lett. 66, 1112 (1995).

    Article  ADS  Google Scholar 

  27. H. Katayama-Yoshida, T. Nishimatsu, T. Yamamoto, and N. Orita, J. Phys.: Condens. Matter 13, 8901 (2001).

    Article  ADS  Google Scholar 

  28. M. Toth, K. Fleischer, and M. R. Phillips, Phys. Rev. B 59, 1575 (1999).

    Article  ADS  Google Scholar 

  29. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, 1998), p. 343.

  30. P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figger, and D. Hommel, J. Appl. Phys. 98, 093519 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Shreter.

Additional information

Original Russian Text © N.I. Bochkareva, V.V. Voronenkov, R.I. Gorbunov, P.E. Latyshev, Yu.S. Lelikov, Yu.T. Rebane, A.I. Tsyuk, Yu.G. Shreter, 2013, published in Fizika i Tekhnika Poluprovodnikov, 2013, Vol. 47, No. 1, pp. 129–136.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bochkareva, N.I., Voronenkov, V.V., Gorbunov, R.I. et al. Tunnel injection and power efficiency of InGaN/GaN light-emitting diodes. Semiconductors 47, 127–134 (2013). https://doi.org/10.1134/S1063782613010089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782613010089

Keywords

Navigation