Plasma Physics Reports

, Volume 32, Issue 11, pp 921–926

Formation of nonquasineutral vortex plasma structures with a zero net current


  • A. V. Gordeev
    • Russian Research Centre Kurchatov Institute
Nonlinear Phenomena

DOI: 10.1134/S1063780X06110067

Cite this article as:
Gordeev, A.V. Plasma Phys. Rep. (2006) 32: 921. doi:10.1134/S1063780X06110067


A nonquasineutral vortex structure with a zero net current is described that arises as a result of electron drift in crossed magnetic and electric fields, the latter being produced by charge separation on a spatial scale of about the magnetic Debye radius r B = |B|/(4πen e ). In such a structure with a radius of rr B , the magnetic field is maintained by a drift current on the order of the electron Alfvén current J Ae = m e c 3/(2e) and can become as strong as Bm e c 2/(er). Estimates show that, in a plasma with a density of n e = 1021−1023 cm−3 and with nonzero electron vorticity driven by high-power laser radiation on a time scale on the order of θ pe −1 , magnetic fields with a strength of B ∼ 108−109 G are generated on micron and submicron scales. The system with closed current that is considered in the present paper can also serve as a model of hot spots in the channel of a Z-pinch.

PACS numbers

52.25.Xz 52.30.-q 52.30.Ex 52.55.-s

Copyright information

© Pleiades Publishing, Inc. 2006