Skip to main content
Log in

Modern compact accelerators of cyclotron type for medical applications

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Ion beam therapy and hadron therapy are types of external beam radiotherapy. Recently, the vast majority of patients have been treated with protons and carbon ions. Typically, the types of accelerators used for therapy were cyclotrons and synchrocyclotrons. It is intuitively clear that a compact facility fits best to a hospital environment intended for particle therapy and medical diagnostics. Another criterion for selection of accelerators to be mentioned in this article is application of superconducting technology to the magnetic system design of the facility. Compact isochronous cyclotrons, which accelerate protons in the energy range 9–30 MeV, have been widely used for production of radionuclides. Energy of 230 MeV has become canonical for all proton therapy accelerators. Similar application of a carbon beam requires ion energy of 430 MeV/u. Due to application of superconducting coils the magnetic field in these machines can reach 4–5 T and even 9 T in some cases. Medical cyclotrons with an ironless or nearly ironless magnetic system that have a number of advantages over the classical accelerators are in the development stage. In this work an attempt is made to describe some conceptual and technical features of modern accelerators under consideration. The emphasis is placed on the magnetic and acceleration systems along with the beam extraction unit, which are very important from the point of view of the facility compactness and compliance with the strict medical requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. K. Craddock and Y.-N. Rao, “Cyclotron and FFAG studies using cyclotron codes,” Proceedings of 19th Int. Conf. on Cycl. and their Appl. Lanzhou, China, 2010.

    Google Scholar 

  2. S. Antoine, B. Autin, W. Beeckman, J. Collot, M. Conjat, F. Forest, J. Fourrier, E. Froidefond, J. L. Lancelot, J. Mandrillon, P. Mandrillon, F. Meot, Y. Mori, D. Neuveglise, C. Ohmori, et al., “Principle design of a proton therapy, rapid-cycling, variable energy spiral FFAG,” Nucl. Instrum. Meth. Phys. Res. A 602, 293–305 (2009).

    Article  ADS  Google Scholar 

  3. V. L. Smirnov, N. S. Azaryan, and S. B. Vorozhtsov, “Preliminary parameter assessments of a spiral FFAG accelerator for proton therapy,” JINR Commun. E9-2013-99 (Dubna, 2013).

    Google Scholar 

  4. D. Krischel, “Advantages and challenges of superconducting accelerators. Ion beam therapy,” Fundamentals, Technology, Clinical Applications (Springer, 2012).

    Google Scholar 

  5. D. L. Friesel and T. A. Antaya, “Medical cyclotrons,” Rev. Accl. Sci. Tech. 02, 133 (2009).

    Article  Google Scholar 

  6. A. Peters, “Particle therapy using proton and ion beams—from basic principles to daily operations and future,” Academic Training Lectures (CERN, 2012).

    Google Scholar 

  7. V. Smirnov, S. Vorozhtsov, and J. Vincent, “Design study of an ultra-compact superconducting cyclotron for isotope production,” Nucl. Instrum. Meth. Phys. Res. A 763, 6–12 (2014).

    Article  ADS  Google Scholar 

  8. C. Oliver, P. Abramian, B. Ahedo, P. Arce, J. M. Barcala, J. Calero, E. Calvo, L. García-Tabarés, D. Gavela, A. Guirao, J. L. Gutiérrez, J. I. Lagares, L. M. Martínez, T. Martínez, E. Molina, et al., “Optimizing the radioisotope production with a weak focusing compact cyclotron,” Proceedings of 20th Int. Conf. on Cycl. and Their Appl., Vancouver, BC, Canada, 2013.

    Google Scholar 

  9. M. K. Dey, A. Dutta Gupta, and A. Chakrabarti, “Design of ultra-light superconducting cyclotron for production of isotopes for medical applications,” Proceedings of 20th Int. Conf. on Cycl. and Their Appl., Vancouver, BC, Canada, 2013.

    Google Scholar 

  10. M. Maggiore, J. V. Minervini, A. Radovinsky, C. Miller, and L. Bromberg, “Study of a superconducting compact cyclotron for delivering 20 MeV high current proton beam,” Proceedings of 20th Int. Conf. on Cycl. and Their Appl., Vancouver, BC, Canada, 2013.

    Google Scholar 

  11. A. E. Geisler, J. Hottenbacher, H.-U. Klein, D. Krischel, H. Röcken, M. Schillo, T. Stephani, and J. H. Timmer, “Commissioning of the ACCEL 250 MeV proton cyclotron,” Proceedings of 18th Int. Conf. on Cycl. and Their Appl., Giardini Naxos, Italy, 2007, pp. 9–14.

    Google Scholar 

  12. W. Kleeven, M. Abs, E. Forton, S. Henrotin, Y. Jongen, V. Nuttens, Y. Paradis, E. Pearson, S. Quets, J. Van de Walle, P. Verbruggen, S. Zaremba, M. Conjat, J. Mandrillon, and P. Mandrillon, “The IBA superconducting synchrocyclotron project S2C2,” Proceedings of 20th Int. Conf. on Cycl. and Their Appl., Vancouver, BC, Canada, 2013.

    Google Scholar 

  13. T. A. Antaya, Medical Accelerators. Applications of Particle Accelerators in Europe (APAE) (Royal Academy of Engineering, London, UK, 2015).

    Google Scholar 

  14. Y. Jongen, M. Abs, A. Blondin, W. Kleeven, S. Zaremba, D. Vandeplassche, V. Aleksandrov, S. Gursky, O. Karamyshev, G. Karamysheva, N. Kazarinov, S. Kostromin, N. Morozov, E. Samsonov, G. Shirkov, et al., “IBAJINR 400 MeV/u superconducting cyclotron for hadron therapy,” Proceedings of 19th Int. Conf. on Cycl. and Their Appl., Lanzhou, China, 2010.

    Google Scholar 

  15. S. A. Artamonov, E. M. Ivanov, G. A. Riabov, and N. A. Chernov, “Highly accurate 3D modeling of the C-80 isochronous cyclotron magnetic structure,” Proceedings of RUPAC2012, Saint-Petersburg, Russia.

  16. M. M. Gordon, “The electric gap-crossing resonance in a three-sector cyclotron,” Nucl. Instrum. Meth. 18, 19, 268–280 (1962).

    Article  Google Scholar 

  17. V. L. Smirnov, S. B. Vorozhtsov, and J. Vincent, “H-superconducting cyclotron for PET isotope production,” Phys. Elem. Part. Atom. Nucl. Lett. ISSN:1814-5957, eISSN:1814-5973. JINR, 2014.

    Google Scholar 

  18. D. Gavela, J. Calero, L. García-Tabarés, A. Guirao, D. Obradors-Campos, C. Oliver, J. M. Pérez Morales, I. Podadera, and F. Toral, “Calculation and design of a RF cavity for a novel compact superconducting cyclotron for radioisotope production (AMIT),” Proceedings of IPAC’15, Richmond, VA, USA 1986.

    Google Scholar 

  19. M. F. Finlan, M. Kruip, and M. N. Wilson, Proceedings of the 11th International Conference on Cyclotrons and Their Applications, Tokyo, 1986, p. 689.

    Google Scholar 

  20. R. Griffiths, Nucl. Instrum. Meth. Phys. Res. Sect. B 40/41, 881 (1989).

    Article  ADS  Google Scholar 

  21. P. W. Schmor, “Review of cyclotrons used in the production of radioisotopes for biomedical applications,” Proceedings of 19th Int. Conf. on Cycl. and Their Appl., Lanzhou, China, 2010.

    Google Scholar 

  22. H. G. Blosser, G. K. Gelbke, D. Lawton, F. Marti, J. Vincent, R. C. York, and A. Zellr, “Proposal for a manufacturing prototype superconducting cyclotron for advanced cancer therapy,” MSUCL-874 (Michigan State University, 1993).

    Google Scholar 

  23. J. Kim and H. Blosser, “Optimized magnet for a 250 MeV proton radiotherapy cyclotron,” Proceedings of the 16th Int. Conf. on Cycl. and Their Applications, East Lansing, MI, USA, 2001, pp. 345–347.

    Google Scholar 

  24. C. Baumgarten, A. Geisler, U. Klein, D. Krischel, H. Rocken, M. Schillo, T. Stephani, and J. H. Timmer, “Isochronism of the ACCEL 250 MeV medical proton cyclotron,” Nucl. Instrum. Meth. Phys. Res. A 570, 10–14 (2007).

    Article  ADS  Google Scholar 

  25. Jong-Won Kim, “Magnetic fields and beam optics studies of a 250 MeV superconducting proton radiotherapy cyclotron,” Nucl. Instrum. Meth. Phys. Res. A 582, 366–373 (2007).

    Article  ADS  Google Scholar 

  26. M. K. Dey, A. Dutta Gupta, U. Bhunia, S. Saha, A. Dutta, J. Pradhan, S. Sur, S. Murali, J. Chaudhuri, C. Mallik, and R. K. Bhandari, “Design of the proposed 250 MeV superconducting cyclotron magnet,” APAC (Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, India, 2007).

    Google Scholar 

  27. B. Qin, K. F. Liu, D. Li, W. Chen, X. Liu, L. Cao, P. Tan, J. Yang, M. W. Fan, Y. Ren, Y. F. Bi, and K. J. Fan, “Design study of a 250 MeV superconducting isochronous cyclotron for proton therapy,” Proceedings of SAP2014, Lanzhou, China 2007.

    Google Scholar 

  28. H. Tsutsui, A. Hashimoto, Y. Mikami, H. Mitsubori, T. Mitsumoto, Y. Touchi, T. Ueda, K. Uno, K. Watazawa, S. Yajima, J. Yoshida, and K. Yumoto, “Design study of a superconducting AVF cyclotron for proton therapy,” Proceedings of 20th Int. Conf. on Cycl. and Their Appl., Vancouver, BC, Canada, 2013.

    Google Scholar 

  29. Xiaoyu Wu, “Conceptual design and orbit dynamics in a 250 MeV superconducting synchrocyclotron,” PhD Thesis, MSU, 1990.

    Google Scholar 

  30. E. M. Syresin, J. Bokor, V. M. Breev, G. A. Karamysheva, M. Yu. Kazarinov, N. A. Morozov, G. V. Mytsin, N. G. Shakun, S. V. Shvidky, and G. D. Shirkov, “Project of demonstration center of proton therapy at DLNP JINR,” Phys. Part. Nucl. Lett. 12 (195), 969–980 (2015).

    Google Scholar 

  31. P. Mandrillon, G. Angellier, and A. Carnicer, “The cyclotrons at CAL: MEDICYC and S2C2,” Proceedings of Puebla-tel Conf., 2015.

    Google Scholar 

  32. W. Kleewen, “The Superconducting synchrocyclotron project S2C2,” Joint Universities Accelerator School. CERN, Switzerland (2014).

    Google Scholar 

  33. J. V. Minervini, A. Radovinsky, C. E. Miller, P. Michael, L. Bromberg, T. Antaya, and M. Maggiore, “Design options for highly compact, superconducting cyclotrons and gantry magnets for hadron therapy,” Beam Dynamics Meets Magnets—II, Bad Zurzach, Switzerland, 2014.

    Google Scholar 

  34. Shinichi Gotoh, “Development status of next-generating high magnetic field superconducting proton therapy systems,” Hoshasen 39 (2), 55–57 (2013).

    Google Scholar 

  35. A. L. Radovinsky, J. V. Minervini, P. C. Michael, L. Bromberg, and C. E. Miller, “Variable energy acceleration in a single iron-free synchrocyclotron,” Plasma Science and Fusion Center (MIT, Cambridge MA 02139 USA, PSFC/RR-13-9, 2013).

    Google Scholar 

  36. L. Calabrettaa, G. Cuttonea, M. Maggiorea, M. Rea, and D. Rifuggiato, “A novel superconducting cyclotron for therapy and radioisotope production,” Nucl. Instrum. Meth. Phys. Res. A 562, 1009–1012 (2006).

    Article  ADS  Google Scholar 

  37. U. Linz, “Accelerators for ion beam therapy,” 517th WE-Heraeus Seminar, 2012.

    Book  Google Scholar 

  38. Y. Jongen, M. Abs, W. Beeckman, W. Kleeven, D. Vandeplassche, S. Zaremba, A. Glazov, S. Gurskiy, G. Karamysheva, and N. Morozov, “Radio frequency system of the cyclotron C400 for hadron therapy,” Proceedings of 18th Int. Conf. on Cycl. and their Appl., Giardini Naxos, Italy, 2007.

    Google Scholar 

  39. D. Guerreau and D. Cussol, “Hadrontherapy in France and the ARCHADE programme,” WS NuPECC (GANIL, France, 2015).

    Google Scholar 

  40. Dong Hyun An, “Design of KIRAMS-430 superconducting cyclotron for carbon cancer therapy,” ICABU2012, Gyeongju, Korea.

  41. Joonsun Kang, B. H. Hong, D. H. An, I. S. Jung, and K. U. Kang, “Magnet design of the superconducting cyclotron for carbon therapy,” Proceedings of Applied Superconductivity. IEEE Transactions on Applied Superconductivity, 22, 4401104 (2011).

    Article  Google Scholar 

  42. In Su Jung, Bong Hwan Hong, Joonsun Kang, Hyun Wook Kim, Chang Hyeuk Kim, and Key Ho Kwon. “RF cavity design for KIRAMS-430 superconducting cyclotron,” Nucl. Instrum. Meth. Phys. Res. A 777, 199–201 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Smirnov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, V., Vorozhtsov, S. Modern compact accelerators of cyclotron type for medical applications. Phys. Part. Nuclei 47, 863–883 (2016). https://doi.org/10.1134/S1063779616050051

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616050051

Navigation