Skip to main content
Log in

Spontaneous violation of chiral symmetry in QCD vacuum is the origin of baryon masses and determines baryon magnetic moments and their other static properties

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A short review is presented of the spontaneous violation of chiral symmetry in QCD vacuum. It is demonstrated that this phenomenon is the origin of baryon masses in QCD. The value of nucleon mass is calculated, as well as the masses of hyperons and some baryonic resonances, and expressed mainly through the values of quark condensates—\( \left\langle {0\left| {\bar qq} \right|0} \right\rangle \), q = u, d, s,—the vacuum expectation values (v.e.v.) of quark field. The concept of v.e.v. induced by external fields is introduced. It is demonstrated that such v.e.v. induced by static electromagnetic field results in quark condensate magnetic susceptibility, which plays the main role in determination of baryon magnetic moments. The magnetic moments of proton, neutron, and hyperons are calculated. The results of calculation of baryon octet β-decay constants are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Gasser and H. Leutwyler, Nucl. Phys. B 94, 269 (1975).

    Article  ADS  Google Scholar 

  2. S. Weinberg, in Festschrift for I. I. Rabi, Ed. by L. Motz, Trans. New York Acad. Sci., Ser. II, Vol. 38, p. 185 (New York, 1977).

  3. B. L. Ioffe, Int. J. Mod. Phys. A 21, 6249 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195 (1968).

    Article  ADS  Google Scholar 

  5. B. L. Ioffe, Physics-Uspekhi 44, 1211 (2001).

    Article  ADS  Google Scholar 

  6. W.-M. Yao et al. (Rev. Part. Phys.), J. Phys. G 33, 1 (2006).

    ADS  Google Scholar 

  7. B. L. Ioffe,Prog. Part. Nucl. Phys. 56, 232 (2006).

    Article  ADS  Google Scholar 

  8. B. L. Ioffe, Nucl. Phys. B 188, 317 (1981); 191, 591 (Errata) (1981).

    Article  ADS  Google Scholar 

  9. K. G. Wilson, Phys. Rev. 179, 1499 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  10. M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 147, 385, 448 (1979).

    Article  ADS  Google Scholar 

  11. B. L. Ioffe, Z. Phys. C 18, 67 (1983).

    Article  ADS  Google Scholar 

  12. V. M. Belyaev and B. L. Ioffe, Sov. Phys. JETP 56, 493 (1982).

    Google Scholar 

  13. B. L. Ioffe and A. V. Smilga, Nucl. Phys. B 232, 109 (1984).

    Article  ADS  Google Scholar 

  14. M. Jamin, Z. Phys. C 37, 635 (1988).

    Article  ADS  Google Scholar 

  15. M. Jamin, Dissertation Thesis, Heidelberg Preprint HD-THEP-88-19 (Heidelberg, 1988).

  16. A. A. Ovchinnikov, A. A. Pivovarov, and L. R. Surguladze, Sov. J. Nucl. Phys. 48, 358 (1988).

    Google Scholar 

  17. A. Oganesian, hep-ph/0308289.

  18. V. A. Sadovnikova, E. G. Drukarev, and M. G. Ryskin, Phys. Rev. D 72, 114015 (2005).

    Google Scholar 

  19. V. M. Belyaev and B. L. Ioffe, Sov. Phys. JETP 57, 716 (1983).

    Google Scholar 

  20. B. L. Ioffe and A. V. Smilga, JETP Lett. 37, 298 (1983); JETP Lett. 38, 48 (Errata) (1983).

    ADS  Google Scholar 

  21. B. V. Geshkenbein and B. L. Ioffe, Nucl. Phys. B 166, 340 (1980).

    Article  ADS  Google Scholar 

  22. M. Aw, M. K. Banerjee, and H. Forkel, Phys. Lett. B 454, 147 (1999).

    Article  ADS  Google Scholar 

  23. B. L. Ioffe, Phys. At. Nucl. 58, 1408 (1995).

    Google Scholar 

  24. I. I. Balitsky and A. V. Yung, Phys. Lett. B 129, 328 (1983).

    Article  ADS  Google Scholar 

  25. S. L. Wilson, J. Pasupathy, and C. B. Chiu, Phys. Rev. D 36, 1451 (1987).

    Article  ADS  Google Scholar 

  26. B. L. Ioffe and A. V. Smilga, Phys. Lett. B 133, 436 (1983).

    Article  ADS  Google Scholar 

  27. V. M. Belyaev and Ya. I. Kogan, Yad. Fiz. 40, 1035 (1984) [Sov. J. Nucl. Phys. 40, 659 (1984)].

    Google Scholar 

  28. I. I. Balitsky, A. V. Kolesnichenko, and A. V. Yung, Sov. J. Nucl. Phys. 41, 178 (1985).

    Google Scholar 

  29. P. Ball, V. M. Braun, and N. Kivel, Nucl. Phys. B 649, 263 (2003).

    Article  ADS  Google Scholar 

  30. V. M. Belyaev and Ya. I. Kogan, JETP Lett. 37, 730 (1983).

    ADS  Google Scholar 

  31. V. M. Belyaev and Ya. I. Kogan, Phys. Lett. B 136, 273 (1984).

    Article  ADS  Google Scholar 

  32. B. L. Ioffe and A. G. Oganesian, Phys. Rev. D 57, R6590 (1998).

    Article  ADS  Google Scholar 

  33. V. M. Belyaev, B. L. Ioffe, and Ya. I. Kogan, Phys. Lett. B 151, 290 (1985).

    Article  ADS  Google Scholar 

  34. B. L. Ioffe, in Proc. of the Intern. School of Nucl. Structure, 1st Course: The Spin Structure of the Nucleon, Erice, Italy, 1995, Ed. by B. Frois et al. (World Sci., Singapore, 1997), p. 215; hepph/9511401.

    Google Scholar 

  35. S. D. Bass, The Spin Structure of the Proton (World Sci., Singapore, 2008).

    Google Scholar 

  36. S. D. Bass, B. L. Ioffe, N. N. Nikolaev, and A.W. Thomas, J.Moscow Phys. Soc. 1, 317 (1991).

    Google Scholar 

  37. M. Anselmino, B. L. Ioffe, and E. Leader, Sov. J. Nucl. Phys. 49, 136 (1989).

    Google Scholar 

  38. V. D. Burkert and B. L. Ioffe, Phys. Lett. B 296, 223 (1992).

    Article  ADS  Google Scholar 

  39. B. L. Ioffe, Phys. At. Nucl. 60, 1707 (1997).

    Google Scholar 

  40. S. B. Gerasimov, Yad. Fiz. 2, 598 (1965) [Sov. J. Nucl. Phys. 2, 430 (1965)].

    Google Scholar 

  41. S. D. Drell and A. C. Hearn, Phys. Rev. Lett. 16, 908 (1966).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioffe, B.L. Spontaneous violation of chiral symmetry in QCD vacuum is the origin of baryon masses and determines baryon magnetic moments and their other static properties. Phys. Atom. Nuclei 72, 1214–1221 (2009). https://doi.org/10.1134/S1063778809070151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778809070151

PACS numbers

Navigation