Skip to main content
Log in

On the origin of gauge symmetries and fundamental constants

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A statistical mechanism is proposed for symmetrization of an extra space. The conditions and rate of attainment of a symmetric configuration and, as a consequence, the appearance of gauge invariance in low-energy physics is discussed. It is shown that, under some conditions, this situation occurs only after completion of the inflationary stage. The dependences of the constants ℏ and G on the geometry of the extra space and the initial parameters of the Lagrangian of the gravitational field with higher derivatives are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Bronnikov and S. G. Rubin, Phys. Rev. D: Part. Fields 73, 124 019 (2006); arXiv:gr-qc/0510107.

    Google Scholar 

  2. S. G. Rubin, Zh. Éksp. Teor. Fiz. 133(4), 820 (2008) [JETP 106 (4), 714 (2008)].

    Google Scholar 

  3. M. Blagojević, Gravitation and Gauge Symmetries (Institute of Physics, Bristol, 2002).

    Book  MATH  Google Scholar 

  4. J. B. Hartle and S. W. Hawking, Phys. Rev. D: Part. Fields 28, 2960 (1983).

    MathSciNet  ADS  Google Scholar 

  5. A. Vilenkin, Phys. Lett. B 117, 25 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  6. D. L. Wiltshire, in Cosmology: The Physics of the Universe, Ed. by B. Robson, N. Visvanathan, and W. S. Woolcock (World Sci., Singapore, 1996), p. 473.

    Google Scholar 

  7. M. J. Duff, L. B. Okun, and G. Veneziano, J. High Energy Phys. (online) 03, 023 (2002), arXiv:physics/0110060.

    Article  MathSciNet  ADS  Google Scholar 

  8. G. E. Volovik, arXiv:0904.1965 [gr-qc].

  9. A. Vilenkin, Phys. Rev. D: Part. Fields 37, 888 (1988).

    MathSciNet  ADS  Google Scholar 

  10. T. A. Brun and J. B. Hartle, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 59, 6370 (1999); arXiv:quant-ph/9808024.

    Google Scholar 

  11. A. B. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, Cambridge, 1996; Faktorial, Moscow, 1999).

    Google Scholar 

  12. G. D. Starkman, D. Stojkovic, and M. Trodden, Phys. Rev. D: Part. Fields 63, 103511 (2001); arXiv:hep-th/0012226v2.

    ADS  Google Scholar 

  13. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry: Methods and Applications (Nauka, Moscow 1979; Springer, New York, 1985).

    Google Scholar 

  14. U. Günther, P. Moniz, and A. Zhuk, Astrophys. Space Sci. 283, 679 (2003); arXiv:gr-qc/0209045.

    Article  ADS  Google Scholar 

  15. K. A. Bronnikov, R. V. Konoplich, and S. G. Rubin, Classical Quantum Gravity 24, 1261 (2007); arXiv:gr-qc/0610003.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. I. Antoniadis and K. Benakli, Phys. Lett. B 331, 313 (1994); arXiv:hep-ph/9403290.

    Article  ADS  Google Scholar 

  17. H. Davoudiasl and T. G. Rizzo, Phys. Rev. D: Part. Fields 76, 055009 (2007); arXiv:hep-ph/0702078.

    ADS  Google Scholar 

  18. M. Regis, M. Serone, and P. Ullio, Phys. Lett. B 663, 250 (2008); arXiv:hep-ph/0612286.

    Article  ADS  Google Scholar 

  19. A. A. Starobinsky, Pis’ma Zh. Éksp. Teor. Fiz. 86(3), 183 (2007) [JETP Lett. 86 (3), 157 (2007)].

    Google Scholar 

  20. S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007); arXiv:hep-th/0601213v5.

    Article  MATH  MathSciNet  Google Scholar 

  21. L. M. Sokolowski, Acta Phys. Pol., B 39, 2879 (2008).

    MathSciNet  ADS  Google Scholar 

  22. S. M. Carroll, J. Geddes, M. B. Hoffman, and R. M. Wald, Phys. Rev. D: Part. Fields 66, 024036 (2002); arXiv:hep-th/0110149.

    MathSciNet  ADS  Google Scholar 

  23. G. E. Volovik, Proceedings of Conference “From Quantum to Emergent Gravity: Theory and Phenomenology,” Trieste, Italy, 2007 (Trieste, 2007), PoS(QG-Ph) 043.

  24. J. Garriga and A. Vilenkin, Phys. Rev. D: Part. Fields 64, 023517 (2001); arXiv:hep-th/0011262.

    ADS  Google Scholar 

  25. A. D. Dolgov and F. R. Urban, Phys. Rev. D: Part. Fields 77, 083503 (2008); arXiv:0801.3090.

    ADS  Google Scholar 

  26. D. H. Lyth and A. Riotto, Phys. Rep. 314, 1 (1999); arXiv:hep-ph/9807278v4.

    Article  MathSciNet  ADS  Google Scholar 

  27. W. Lerche, D. Lust, and A. N. Schellekens, Nucl. Phys. B 287, 477 (1987).

    Article  ADS  Google Scholar 

  28. S. Kachru, R. Kallosh, A. Linde, and S. P. Trivedi, Phys. Rev. D: Part. Fields 68, 046005 (2003).

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Rubin.

Additional information

Original Russian Text © S.G. Rubin, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 136, No. 6, pp. 1113–1120.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, S.G. On the origin of gauge symmetries and fundamental constants. J. Exp. Theor. Phys. 109, 961–967 (2009). https://doi.org/10.1134/S1063776109120061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109120061

Keywords

Navigation