Skip to main content
Log in

On possible circumbinary configurations of the planetary systems of α Centauri and EZ Aquarii

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Possible configurations of the planetary systems of the binary stars α Cen A–BandEZAqr A–C are analyzed. The P-type orbits—circumbinary ones, i.e., the orbits around both stars of the binary, are studied. The choice of these systems is dictated by the fact that α Cen is closest to us in the Galaxy, while EZ Aqr is the closest system whose circumbinary planets, as it turns out, may reside in the “habitability zone.” The analysis has been performed within the framework of the planar restricted three-body problem. The stability diagrams of circumbinary motion have been constructed: on representative sets of initial data (in the pericentric distance–eccentricity plane), we have computed the Lyapunov spectra of planetary motion and identified the domains of regular and chaotic motion through their statistical analysis. Based on present views of the dynamics and architecture of circumbinary planetary systems, we have determined the most probable planetary orbits to be at the centers of the main resonance cells, at the boundary of the dynamical chaos domain around the parent binary star, which allows the semimajor axes of the orbits to be predicted. In the case of EZ Aqr, the orbit of the circumbinary planet is near the habitability zone and, given that the boundary of this zone is uncertain, may belong to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Benest, Astron. Astrophys. 206, 143 (1988).

    ADS  Google Scholar 

  2. D. Benest, Astron. Astrophys. 223, 361 (1989).

    ADS  Google Scholar 

  3. D. Benest and R. Gonczi, Earth, Moon Planets 81, 7 (1998).

    Article  ADS  Google Scholar 

  4. D. Benest and R. Gonczi, Earth, Moon Planets 93, 175 (2004).

    Article  ADS  Google Scholar 

  5. V. V. Bobylev, Astron. Lett. 36, 816 (2010).

    Article  ADS  Google Scholar 

  6. H. F. von Bremen, F. E. Udwadia, and W. Proskurowski, Physica D 101, 1 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  7. L. Casagrande, C. Flynn, and M. Bessell, Mon. Not. R. Astron. Soc. 389, 585 (2008).

    Article  ADS  Google Scholar 

  8. X. Delfosse, T. Forveille, S. Udry, J.-L. Beuzit, M. Mayor, and C. Perrier, Astron. Astrophys. 350, 39 (1999).

    ADS  Google Scholar 

  9. L. R. Doyle, J. A. Carter, D. C. Fabrycky, R.W. Slawson, S. B. Howell, J. N. Winn, J. A. Orosz, A. Prša, et al., Science 333, 1602 (2011).

    Article  ADS  Google Scholar 

  10. M. Endl, M. Kürster, S. Els, A. P. Hatzes, and W. D. Cochran, Astron. Astrophys. 374, 675 (2001).

    Article  ADS  Google Scholar 

  11. M. England, Mon. Not. R. Astron. Soc. 191, 23 (1980).

    ADS  Google Scholar 

  12. E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems (Springer, Berlin, 1987).

    Book  MATH  Google Scholar 

  13. M. J. Holman and P. A. Wiegert, Astron. J. 117, 621 (1999).

    Article  ADS  Google Scholar 

  14. Su-Shu Huang, Publ. Astron. Soc. Pacif. 72, 106 (1960).

    Article  ADS  Google Scholar 

  15. R. Kopparapu, R. Ramirez, J. F. Kasting, V. Eymet, T. D. Robinson, S. Mahadevan, R. C. Terrien, Sh. Domagal-Goldman, V. Meadows, and R. Deshpande, Astrophys. J. 765, 131 (2013).

    Article  ADS  Google Scholar 

  16. V. B. Kostov, P. R. McCullough, T. C. Hinse, Z. I. Tsvetanov, G. Hébrard, R. F. Díaz, M. Deleuil, and J. A. Valenti, Astrophys. J. 770, 52 (2013).

    Article  ADS  Google Scholar 

  17. V. B. Kostov, P. R. McCullough, J. A. Carter, M. Deleuil, R. F. Díaz, D. C. Fabrycky, G. Hé brard, T. C. Hinse, et al., Astrophys. J. 784, 14 (2014); Astrophys. J. 787, 93(E) (2014).

    Article  ADS  Google Scholar 

  18. V. V. Kouprianov and I. I. Shevchenko, Astron. Astrophys. 410, 749 (2003).

    Article  ADS  Google Scholar 

  19. V. V. Kouprianov and I. I. Shevchenko, Icarus 176, 224 (2005).

    Article  ADS  Google Scholar 

  20. J. Lissauer, E. Quintana, J. Chambers, M. J. Duncan, and F. C. Adams, Rev.Mex. Astron. Astrophys. 22, 99 (2004).

    ADS  Google Scholar 

  21. P. A. Mason, J. I. Zuluaga, P. A. Cuartas-Restrepo, and J. M. Clark, Int. J. Astrobiol. 14, 391 (2015).

    Article  Google Scholar 

  22. A. V. Melnikov and I. I. Shevchenko, Sol. Sys. Res. 32, 480 (1998).

    ADS  Google Scholar 

  23. S. Meschiari, Astrophys. J. 752, 71 (2012).

    Article  ADS  Google Scholar 

  24. C. D. Murray and S. F. Dermott, Solar System Dynamics (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  25. S.-J. Paardekooper, Z.M. Leinhardt, P. Thébault, and C. Baruteau, Astrophys. J. 754, L16 (2012).

    Article  ADS  Google Scholar 

  26. E. A. Popova and I. I. Shevchenko, Astron. Lett. 38, 581 (2012).

    Article  ADS  Google Scholar 

  27. E. A. Popova and I. I. Shevchenko, Astrophys. J. 769, 152 (2013).

    Article  ADS  Google Scholar 

  28. E. Popova, in Proceedings of the IAU Symposium No. 310, Ed. by Z. Knezevic and A. Lemaitre (IAU, 2014), p. 98.

  29. D. Pourbaix, C. Neuforge-Verheecke, and F. Noels, Astron. Astrophys. 344, 172 (1999).

    ADS  Google Scholar 

  30. R. Powell, An Atlas of the Universe (2006). wwwatlasoftheuniversecom

    Google Scholar 

  31. Research Consortium on Nearby Stars (2015). wwwreconsorg

  32. I. I. Shevchenko and V. V. Kouprianov, Astron. Astrophys. 394, 663 (2002).

    Article  ADS  Google Scholar 

  33. I. I. Shevchenko and A. V. Mel’nikov, JETP Lett. 77, 642 (2003).

    Article  ADS  Google Scholar 

  34. I. I. Shevchenko, in Asteroids, Comets, Meteors, Ed. by B. Warmbein (ESA, Berlin, 2002), p. 367.

  35. I. I. Shevchenko, Astrophys. J. 799, 8 (2015).

    Article  ADS  Google Scholar 

  36. P. Thébault, F. Marzari, and H. Scholl, Mon. Not. R. Astron. Soc. 388, 1528 (2008).

    Article  ADS  Google Scholar 

  37. P. Thébault, F. Marzari, and H. Scholl, Mon. Not. R. Astron. Soc. 393, 21 (2009).

    Article  ADS  Google Scholar 

  38. W. Welsh, J. A. Orosz, J. A. Carter, and D. C. Fabrycky, Proceedings of the IAU Symp. No. 293, Ed. by N. Haghighipour (IAU, 2014), p. 125.

  39. P. A. Wiegert and M. J. Holman, Astron. J. 113, 1445 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Shevchenko.

Additional information

Original Russian Text © E.A. Popova, I.I. Shevchenko, 2016, published in Pis’ma v Astronomicheskii Zhurnal, 2016, Vol. 42, No. 4, pp. 294–301.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, E.A., Shevchenko, I.I. On possible circumbinary configurations of the planetary systems of α Centauri and EZ Aquarii. Astron. Lett. 42, 260–267 (2016). https://doi.org/10.1134/S106377371604006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377371604006X

Keywords

Navigation