Skip to main content
Log in

Numerical theories of motion of Triton and Nereid

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The ephemerides of satellites of major planets are needed in planning spacecraft missions both for studying the satellites themselves and for navigational support during the flights of spacecraft in the vicinity of planets. In addition, accurate numerical theories of motion of the natural satellites of major planets make it possible to increase the accuracy of the ephemerides of their central planets based on positional (photographic and CCD) observations of the satellites. Numerical theories of Neptune’s satellites, Triton and Nereid, constructed within the framework of the ERA software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Archinal, M. F. A’Hearn, A. Conrad, et al., Celest. Mech. Dyn. Astr. 109, 101 (2011).

    Article  ADS  MATH  Google Scholar 

  2. L. E. Cunningham, Celest.Mech. 2, 207 (1970).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. R. A. Jacobson, Astron. J. 137, 4322 (2009).

    Article  ADS  Google Scholar 

  4. R.A. Jacobson, J. E. Riedel, and A. H. Taylor, Astron. Astrophys. 247, 565 (1991).

    ADS  Google Scholar 

  5. G. A. Kosmodamianskii, A. L. Poroshina, and M. D. Zamarashkina, Izv. Glavn. Astron. Observ. 220, 249 (2013).

    Google Scholar 

  6. G. A. Krasinsky and M. V. Vasilyev, in Proceedings of the IAU Colloquium No. 165, Poznan, July 1–5, 1996 (Int. Astron. Union, 1997), p. 239.

    Google Scholar 

  7. G. P. Kuiper, Astron. Soc. Pacif. 61, 175 (1949).

    Article  ADS  Google Scholar 

  8. W. Lassell, R. Astron. Soc. 7, 153 (1846).

    ADS  Google Scholar 

  9. B. G. Marsden, Int. Astron. Union Circ. No. 4867 (1989).

    Google Scholar 

  10. F. Mignard, Astron. Astrophys. 43, 359 (1975).

    ADS  Google Scholar 

  11. E. V. Pitjeva, in Proceedings of the Journees 2008 Systemes de reference spatio-temporels, Ed. by M. Soffel and N. Capitaine (Lohrmann-Observatorium and Observatoire de Paris, 2009), p. 57.

  12. E. V. Pitjeva, Astron. Vestn. 47 (2013, in press).

  13. A. L. Poroshina and G. A. Kosmodamianskii, Izv. Glavn. Astron. Observ. 220, 305 (2013).

    Google Scholar 

  14. L. E. Rose, Astron. J. 79, 489 (1974).

    Article  ADS  Google Scholar 

  15. S. N. Vashkov’yak, Itogi Nauki Tekh. 35, 162 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Poroshina.

Additional information

Original Russian Text © A.L. Poroshina, 2013, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2013, Vol. 39, No. 12, pp. 969–974.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poroshina, A.L. Numerical theories of motion of Triton and Nereid. Astron. Lett. 39, 876–881 (2013). https://doi.org/10.1134/S1063773713110066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773713110066

Keywords

Navigation