Skip to main content
Log in

The evolution of hydrocarbon dust grains in the interstellar medium and its influence on the infrared spectra of dust

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Computations of the evolution of the distributions of the size and degree of aromatization of interstellar dust grains, destruction by radiation and collisions with gas particles, and fragmentation during collisions with other grains are presented. The results of these computations are used to model dust emission spectra. The evolution of an ensemble of dust particles sensitively depends on the initial size distribution of the grains. Radiation in the considered range of fluxes mainly aromatizes grains. With the exception of the smallest grains, it is mainly erosion during collisions with gas particles that leads to the destruction of grains. In the presence of particle velocities above 50 km/s, characteristic for shocks in supernova remnants, grains greater than 20 Å in size are absent. The IR emission spectrum changes appreciably during the evolution of the dust, and depends on the adopted characteristics of the grains, in particular, the energy of their C–Cbonds (E 0). Aromatic bands are not observed in the near-IR (2–15 μm) when E 0 is low, even when the medium characteristics are typical for the average interstellarmedium in our Galaxy; this indicates a preference for high E 0 values. The influence of the characteristics of the medium on the intensity ratios for the dust emission in various photometric bands is considered. The I 3.4/I 11.3 intensity ratio is most sensitive to the degree of aromatization of small grains. The I 3.3/I 70+160 ratio is a sensitive indicator of the contribution of aromatic grains to the total mass of dust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. C. Gillett, W. J. Forrest, and K. M. Merrill, Astrophys. J. 183, 87 (1973).

    Article  ADS  Google Scholar 

  2. A. Leger and J. L. Puget, Astron. Astrophys. 137, L5 (1984).

    ADS  Google Scholar 

  3. L. J. Allamandola, A. G. G. M. Tielens, and J. R. Barker, Astrophys. J. 290, L25 (1985).

    Article  ADS  Google Scholar 

  4. S. Kwok and Y. Zhang, Astrophys. J. 771, 5 (2013).

    Article  ADS  Google Scholar 

  5. W. W. Duley and A. Hu, Astrophys. J. 761, 115 (2012).

    Article  ADS  Google Scholar 

  6. E. Churchwell, M. S. Povich, D. Allen, M. G. Taylor, M. R. Meade, B. L. Babler, R. Indebetouw, C. Watson, B. A. Whitney, M. G. Wolfire, T. M. Bania, R. A. Benjamin, D. P. Clemens, M. Cohen, C. J. Cyganowski, et al., Astrophys. J. 649, 759 (2006).

    Article  ADS  Google Scholar 

  7. R. J. Simpson, M. S. Povich, S. Kendrew, C. J. Lintott, E. Bressert, K. Arvidsson, C. Cyganowski, S. Maddison, K. Schawinski, R. Sherman, A. M. Smith, and G. Wolf-Chase, Mon. Not. R. Astron. Soc. 424, 2442 (2012).

    Article  ADS  Google Scholar 

  8. Y. N. Pavlyuchenkov, M. S. Kirsanova, and D. S. Wiebe, Astron. Rep. 57, 573 (2013).

    Article  ADS  Google Scholar 

  9. B. T. Draine and A. Li, Astrophys. J. 657, 810 (2007).

    Article  ADS  Google Scholar 

  10. K.M. Sandstrom, A. D. Bolatto, B. T. Draine, C. Bot, and S. Stanimirovic, Astrophys. J. 715, 701 (2010).

    Article  ADS  Google Scholar 

  11. M. S. Khramtsova, D. S. Wiebe, P. A. Boley, and Y. N. Pavlyuchenkov, Mon. Not. R. Astron. Soc. 431, 2006 (2013).

    Article  ADS  Google Scholar 

  12. C. W. Engelbracht, K. D. Gordon, G. H. Rieke, M. W. Werner, D. A. Dale, and W. B. Latter, Astrophys. J. 628, L29 (2005).

    Article  ADS  Google Scholar 

  13. D. S. Wiebe, M. S. Khramtsova, O. V. Egorov, and T. A. Lozinskaya, Astron. Lett. 40, 278 (2014).

    Article  ADS  Google Scholar 

  14. M. S. Khramtsova, D. S. Wiebe, T. A. Lozinskaya, and O. V. Egorov, Mon.Not. R. Astron. Soc. 444, 757 (2014).

    Article  ADS  Google Scholar 

  15. A. P. Jones, L. Fanciullo, M. Köhler, L. Verstraete, V. Guillet, M. Bocchio, and N. Ysard, Astron. Astrophys. 558, A62 (2013).

    Article  ADS  Google Scholar 

  16. M. S. Murga, S. A. Khoperskov, and D. S. Wiebe, Astron. Rep. 60, 233 (2016).

    Article  ADS  Google Scholar 

  17. H. Hirashita, Mon. Not. R. Astron. Soc. 407, L49 (2010).

    Article  ADS  Google Scholar 

  18. H.-P. Gail and E. Sedlmayr, Physics and Chemistry of Circumstellar Dust Shells (Cambridge Univ. Press, Cambridge, UK, 2014).

    Google Scholar 

  19. J. E. Chiar, A. G. G. M. Tielens, A. J. Adamson, and A. Ricca, Astrophys. J. 770, 78 (2013).

    Article  ADS  Google Scholar 

  20. D. A. García-Hernández and S. K. Górny, Astron. Astrophys. 567, A12 (2014).

    Article  Google Scholar 

  21. J. S. Mathis, P. G. Mezger, and N. Panagia, Astron. Astrophys. 128, 212 (1983).

    ADS  Google Scholar 

  22. W.W. Duley, Astrophys. Space Sci. 23, 43 (1973).

    Article  ADS  Google Scholar 

  23. K. Sellgren, M. W. Werner, and H. L. Dinerstein, Astrophys. J. 271, L13 (1983).

    Article  ADS  Google Scholar 

  24. B. T. Draine and A. Li, Astrophys. J. 551, 807 (2001).

    Article  ADS  Google Scholar 

  25. Y. N. Pavlyuchenkov, D. S. Wiebe, V. V. Akimkin, M. S. Khramtsova, and T. Henning, Mon. Not. R. Astron. Soc. 421, 2430 (2012).

    Article  ADS  Google Scholar 

  26. A. P. Jones, Astron. Astrophys. 540, A1 (2012).

    Article  ADS  Google Scholar 

  27. A. P. Jones, Astron. Astrophys. 540, A2 (2012).

    Article  ADS  Google Scholar 

  28. A. P. Jones, Astron. Astrophys. 542, A98 (2012).

    Article  ADS  Google Scholar 

  29. A. P. Jones, Astron. Astrophys. 545, C2 (2012).

    Article  ADS  Google Scholar 

  30. A. P. Jones, Astron. Astrophys. 545, C3 (2012).

    Article  ADS  Google Scholar 

  31. N. V. Voshchinnikov, V. B. Il’in, and T. Henning, Astron. Astrophys. 429, 371 (2005).

    Article  ADS  Google Scholar 

  32. B. T. Draine and H. M. Lee, Astrophys. J. 285, 89 (1984).

    Article  ADS  Google Scholar 

  33. B. T. Draine and H. M. Lee, Astrophys. J. 318, 485 (1987).

    Article  ADS  Google Scholar 

  34. P.Pilleri, C.Joblin, F.Boulanger, and T.Onaka, arXiv:1502.04941 [astro-ph.GA] (2015).

  35. T. I. Mori, T. Onaka, I. Sakon, D. Ishihara, T. Shimonishi, R. Ohsawa, and A. C. Bell, Astrophys. J. 784, 53 (2014).

    Article  ADS  Google Scholar 

  36. C. Joblin, A. G. G.M. Tielens, L. J. Allamandola, and T. R. Geballe, Astrophys. J. 458, 610 (1996).

    Article  ADS  Google Scholar 

  37. H. Hirashita and H. Yan, Mon. Not. R. Astron. Soc. 394, 1061 (2009).

    Article  ADS  Google Scholar 

  38. H. Yan, A. Lazarian, and B. T. Draine, Astrophys. J. 616, 895 (2004).

    Article  ADS  Google Scholar 

  39. J. S. Mathis, W. Rumpl, and K. H. Nordsieck, Astrophys. J. 217, 425 (1977).

    Article  ADS  Google Scholar 

  40. D. Massa and B. Savage, in Interstellar Dust, Ed. by L. J. Allamandola and A. G. G. M. Tielens, IAU Symp. 135, 3 (1989).

    Article  ADS  Google Scholar 

  41. R. Siebenmorgen, N. V. Voshchinnikov, and S. Bagnulo, Astron. Astrophys. 561, A82 (2014).

    Article  ADS  Google Scholar 

  42. C. W. Engelbracht, K. D. Gordon, G. H. Rieke, M. W. Werner, D. A. Dale, and W. B. Latter, Astrophys. J. 628, L29 (2005).

    Article  ADS  Google Scholar 

  43. B. T. Draine, D. A. Dale, G. Bendo, K. D. Gordon, J. D. T. Smith, L. Armus, C. W. Engelbracht, G. Helou, R. C. Kennicutt, Jr., A. Li, H. Roussel, F. Walter, D. Calzetti, J. Moustakas, E. J. Murphy, et al., Astrophys. J. 663, 866 (2007).

    Article  ADS  Google Scholar 

  44. J. D. T. Smith, B. T. Draine, D. A. Dale, J. Moustakas, R. C. Kennicutt, G. Helou, L. Armus, H. Roussel, K. Sheth, G. J. Bendo, B. A. Buckalew, D. Calzetti, C. W. Engelbracht, K. D. Gordon, D. J. Hollenbach, et al., Astrophys. J. 656, 770 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Murga.

Additional information

Original Russian Text © M.S. Murga, S.A. Khoperskov, D.S. Wiebe, 2016, published in Astronomicheskii Zhurnal, 2016, Vol. 93, No. 7, pp. 656–668.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murga, M.S., Khoperskov, S.A. & Wiebe, D.S. The evolution of hydrocarbon dust grains in the interstellar medium and its influence on the infrared spectra of dust. Astron. Rep. 60, 669–681 (2016). https://doi.org/10.1134/S1063772916070052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772916070052

Navigation