Skip to main content
Log in

Wave anisotropy of shear viscosity and elasticity

  • Acoustics of Living Systems. Bioacoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The paper presents the theory of shear wave propagation in a “soft solid” material possessing anisotropy of elastic and dissipative properties. The theory is developed mainly for understanding the nature of the low-frequency acoustic characteristics of skeletal muscles, which carry important diagnostic information on the functional state of muscles and their pathologies. It is shown that the shear elasticity of muscles is determined by two independent moduli. The dissipative properties are determined by the fourth-rank viscosity tensor, which also has two independent components. The propagation velocity and attenuation of shear waves in muscle depend on the relative orientation of three vectors: the wave vector, the polarization vector, and the direction of muscle fiber. For one of the many experiments where attention was distinctly focused on the vector character of the wave process, it was possible to make a comparison with the theory, estimate the elasticity moduli, and obtain agreement with the angular dependence of the wave propagation velocity predicted by the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. I. Usik, Prikl. Mat. Mekh. 37, 448 (1973).

    Google Scholar 

  2. S. Yu. Bershitskii and A. K. Tsaturyan, Dokl. Akad. Nauk SSSR 259, 53 (1981).

    Google Scholar 

  3. K. I. Uffmann, S. Maderwald, W. Ajaj, C. G. Galban, S. Mateiescu, H. H. Quick, and M. E. Ladd, NMR Biomed. 17(4), 181 (2004).

    Article  Google Scholar 

  4. S. J. Papazoglou, J. Braun, U. Hamhaber, and I. Sack, Phys. Med. Biol. 50, 1313 (2005).

    Article  Google Scholar 

  5. S. I. Ringleb, S. F. Bensamoun, Q. Chen, A. Manduca, K. N. An, and R. L. Ehman, J. Magn. Reson. Imaging 25, 301 (2007).

    Article  Google Scholar 

  6. S. F. Bensamoun, K. J. Glaser, S. I. Ringleb, Q. Chen, R. L. Ehman, and K. N. An, J. Magn. Reson. Imaging 27, 1083 (2008).

    Article  Google Scholar 

  7. K. Hoyt, T. Kneezel, B. Castaneda, and K. J. Parker, Phys. Med. Biol. 53, 4063 (2008).

    Article  Google Scholar 

  8. Z. J. Domire, M. B. McCullough, Q. Chen, and K. N. An, J. Appl. Biomech. 25, 93 (2009).

    Google Scholar 

  9. J. -L. Gennisson, T. Deffieux, E. Mace, G. Montaldo, M. Fink, and M. Tanter, Ultrasound Med. Biol. 36, 789 (2010).

    Article  Google Scholar 

  10. D. Klatt, S. Papazoglou, J. Braun, and I. Sack, Phys. Med. Biol. 55, 6445 (2010).

    Article  Google Scholar 

  11. T. I. Muraki, Z. J. Domire, M. B. McCullough, Q. Chen, and K. N. An, Clin. Biomech. 25, 499 (2010).

    Article  Google Scholar 

  12. M. B. McCullough, Z. J. Domire, A. M. Reed, S. Amin, S. R. Ytterberg, Q. Chen, and K. N. An, Muscle Nerve 43, 585 (2011).

    Article  Google Scholar 

  13. D. Royer, J. L. Gennisson, T. Deffieux, and M. Tanter, J. Acoust. Soc. Am. 129, 2757 (2011).

    Article  ADS  Google Scholar 

  14. G. A. Meyer, A. D. McCulloch, and R. L. Lieber, J. Biomech. Eng. 133, 091007 (2011).

    Article  Google Scholar 

  15. G. F. Elliott and C. R. Worthington, Int. J. Biol. Macromol. 29, 213 (2001).

    Article  Google Scholar 

  16. O. V. Rudenko, Moscow Univ. Phys. Bull. No. 6, 18 (1996).

    Google Scholar 

  17. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, Ultrasound Med. Biol. 24, 1419 (1998).

    Article  Google Scholar 

  18. J. Bishop, G. Poole, M. Leitch, and D. B. Plewes, J. Magn. Res. Imaging 8, 1257 (1998).

    Article  Google Scholar 

  19. V. Dutt, R. R. Kinnick, R. Muthupillai, T. E. Oliphant, R. L. Ehman, and J. F. Greenleaf, Ultrasound Med. Biol. 26, 397 (2000).

    Article  Google Scholar 

  20. T. Wu, J. P. Felmlee, J. F. Greenleaf, S. J. Riederer, and R. L. Ehman, Magn. Res. Med. 43, 111 (2000).

    Article  Google Scholar 

  21. Z. Wu, L. S. Taylor, D. J. Rubens, and K. J. Parker, J. Acoust. Soc. Am. 111, 439 (2002).

    Article  ADS  Google Scholar 

  22. O. V. Rudenko, Phys.-Usp. 49, 69 (2006).

    Article  ADS  Google Scholar 

  23. A. P. Sarvazyan, O. V. Rudenko, and W. L. Nyborg, Ultrasound Med. Biol. 36, 1379 (2010).

    Article  Google Scholar 

  24. A. P. Sarvazyan, Ultrasonics 50, 230 (2010).

    Article  Google Scholar 

  25. A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, Curr. Med. Imaging Rev. 7, 255 (2011).

    Article  Google Scholar 

  26. A. P. Sarvazyan, M. W. Urban, and J. F. Greenleaf, Ultrasound Med. Biol. 39, 1133 (2013).

    Article  Google Scholar 

  27. A. Desplantez, C. Cornu, and F. Goubel, J. Biomech. 32, 555 (1999).

    Article  Google Scholar 

  28. E. Grazi and C. Di Bona, J. Theor. Biol. 242, 853 (2006).

    Article  Google Scholar 

  29. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, (Pergamon, New York, 1986).

    Google Scholar 

  30. S. Catheline, J. L. Gennisson, G. Delon, M. Fink, R. Sinkus, S. Abouelkaram, and J. Culioli, J. Acoust. Soc. Am. 116, 3734 (2004).

    Article  ADS  Google Scholar 

  31. O. V. Rudenko and A. P. Sarvazyan, Acoust. Phys. 52, 720 (2006).

    Article  ADS  Google Scholar 

  32. L. D. Landau and E. M. Lifshitz, Fluid Dynamics, (Pergamon, New York, 1986).

    Google Scholar 

  33. S. Aristizabal, C. A. Carrascal, R. R. Kinnik, I. Z. Nenadic, J. F. Greenleaf, and M. W. Urban, Proc. Meetings Acoust. 20, 075004 (2014).

    Article  Google Scholar 

  34. A. Sarvazyan, O. Rudenko, S. Aglyamov, and S. Emelianov, Med. Hypoth. 83, 6 (2014).

    Article  Google Scholar 

  35. V. G. Andreev and V. N. Dmitriev, Acoust. Phys. 43, 123 (1997).

    ADS  Google Scholar 

  36. O. V. Rudenko and E. V. Solodov, Acoust. Phys. 57, 51 (2011).

    Article  ADS  Google Scholar 

  37. M. A. Mironov, P. A. Pyatakov, I. I. Konopatskaya, G. T. Clement, and N. I. Vykhodseva, Acoust. Phys. 55, 567 (2009).

    Article  ADS  Google Scholar 

  38. V. G. Andreev, T. B. Krit, and O. A. Sapozhnikov, Acoust. Phys. 56, 605 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Rudenko.

Additional information

Original Russian Text © O.V. Rudenko, A.P. Sarvazyan, 2014, published in Akusticheskii Zhurnal, 2014, Vol. 60, No. 6, pp. 679–687.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudenko, O.V., Sarvazyan, A.P. Wave anisotropy of shear viscosity and elasticity. Acoust. Phys. 60, 710–718 (2014). https://doi.org/10.1134/S1063771014060141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771014060141

Keywords

Navigation