Skip to main content
Log in

Experimental observation and numerical simulation of spectra of solid-anode X-ray tubes

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Possibilities of the experimental measurement and theoretical modeling of a fluorescence spectrum of a solid-anode X-ray tube are studied. A setup for the direct measurement of spectra of X-ray tubes of different types is created, spectra of a commercial BKh15 Svetlana X-ray tube are measured in wide range of anode voltages and currents. Calculations of spectra using the Ebel algorithm (Horst Ebel, 2006) with the parameters recommended in the original work ensure the satisfactory quality of the reproduction of the measured spectra, but demonstrate some statistically noticeable deviations. The optimization of model parameters ensures the improvement of the quality of simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakhtiarov, A.V., Rentgeno-spektral’nyi fluorestsentnyi analiz v geologii i geokhimii (X-Ray Fluorescence Analysis in Geology and Geochemistry), Leningrad Nedra, 1985.

    Google Scholar 

  2. Borkhodoev, V.Ya., Rentgenofluorestsentnyi analiz gornykh porod sposobom fundamental’nykh parametrov (X-Ray Fluorescence Analysis of Rocks by the Fundamental Parameter Method), Magadan Severovost. Kompleksn. Nauchn.-Issled. Inst., Dal’nevost. Otd. Ross. Akad. Nauk, 1999.

    Google Scholar 

  3. Pavlinskii, G.V., Osnovy fiziki rentgenovskogo izlucheniya (Fundamentals of X-Ray Physics), Moscow Fizmatlit, 2007.

    Google Scholar 

  4. Finkel’shtein, A.L. and Pavlova, T.O., Zavod. Lab., Diagn. Mater., 1996, vol. 62, no. 12, p. 16.

    Google Scholar 

  5. Pavlinsky, G.V. and Portnoy, A.Yu., Rad. Phys. Chem., 2001, vol. 62, nos. 2-3, p. 207.

    Article  CAS  Google Scholar 

  6. Pavlinsky, G.V. and Portnoy, A.Yu., X-Ray Spectrom., 2002, vol. 31, no. 3, p. 247.

    Article  CAS  Google Scholar 

  7. Ebel, H., Adv. X-Ray Anal., 2006, vol. 49, p. 267.

    CAS  Google Scholar 

  8. Elam, W.T., Ravel, B.D., and Sieber, J.R., Rad. Phys. Chem., 2002, vol. 63, no. 2, p. 121.

    Article  CAS  Google Scholar 

  9. Gupta, D., Roy, S., Ghosh, R., and Mitra, A.K., X-Ray Spectrom., 2013, vol. 42, no. 4, p. 268.

    Article  CAS  Google Scholar 

  10. Okuda, T., Schauer, J.J., and Shafer, M.M., Atm. Environ., 2014, vol. 97, p. 552.

    Article  CAS  Google Scholar 

  11. Oskolok, K.V. and Monogarova, O.V., J. Anal. Chem., 2008, vol. 63, no. 12, p. 1176.

    Article  CAS  Google Scholar 

  12. Xie, F., Minaev, K.V., Sovkov, V.B., Ivanov, V.S., Li, D., and Li, L., Chem. Phys. Lett., 2010, vol. 493, nos. 4-6, p. 238.

    Article  CAS  Google Scholar 

  13. Xie, F., Li, L., Li, D., Sovkov, V.B., Minaev, K.V., Ivanov, V.S., Lyyra, A.M., and Magnier, S., J. Chem. Phys., 2011, vol. 135, no. 2, p. 024303.

    Article  CAS  Google Scholar 

  14. Sovkov, V.B., Ivanov, V.S., Minaev, K.V., and Aleksandrov, M.S., Opt. Spectrosc., 2013, vol. 114, no. 2, p. 167.

    Article  CAS  Google Scholar 

  15. Guan, Y., Han, X., Yang, J., Zhou, Z., Dai, X., Ahmed, E.H., Lyyra, A.M., Magnier, S., Ivanov, V.S., and Skublov, A.S., J. Chem. Phys., 2013, vol. 139, no. 14, p. 144303.

    Article  CAS  Google Scholar 

  16. Sovkov, V.B. and Ivanov, V.S., J. Chem. Phys., 2014, vol. 140, no. 13, p. 134307.

    Article  CAS  Google Scholar 

  17. Ma, J., Liu, W., Yang, J., Wu, J., Sun, W., Ivanov, V.S., Skublov, A.S., Sovkov, V.B., Dai, X., and Jia, S., J. Chem. Phys., 2014, vol. 141, no. 24, p. 244310.

    Article  Google Scholar 

  18. Hubbell, J.H. and Seltzer, S.M., Tables of X-Ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. wwwnistgov/pml/data/xraycoef/. Cited May 20, 2015.

    Google Scholar 

  19. Hubbell, J.H., Trehan, P.N., Singh, N., Chand, B., Mehta, D., Garg, M.L., Garg, R.R., Singh, S., and Puri, S., J. Phys. Chem. Ref. Data, 1994, vol. 23, no. 2, p. 339.

    Article  CAS  Google Scholar 

  20. Blokhin, M.A. and Shveitser, I.G., Rentgenospektral’nyi spravochnik (Reference Book of X-Ray Spectra), Moscow Nauka, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Volkov.

Additional information

Original Russian Text © P.G. Volkov, S.I. Korobeinikov, V.I. Nikolaev, V.B. Sovkov, 2016, published in Zhurnal Analiticheskoi Khimii, 2016, Vol. 71, No. 5, pp. 494–498.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, P.G., Korobeinikov, S.I., Nikolaev, V.I. et al. Experimental observation and numerical simulation of spectra of solid-anode X-ray tubes. J Anal Chem 71, 471–475 (2016). https://doi.org/10.1134/S1061934816030151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934816030151

Keywords

Navigation