Skip to main content
Log in

Stability of continuous-time quantum filters with measurement imperfections

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

The fidelity between the state of a continuously observed quantum system and the state of its associated quantum filter, is shown to be always a submartingale. The observed system is assumed to be governed by a continuous-time Stochastic Master Equation (SME), driven simultaneously by Wiener and Poisson processes and that takes into account incompleteness and errors in measurements. This stability result is the continuous-time counterpart of a similar stability result already established for discrete-time quantum systems and where the measurement imperfections are modelled by a left stochastic matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Amini, Stabilization of Discrete-Time Quantum Systems and Stability of Continuous-Time Quantum Filters (PhD thesis, Mines ParisTech, 2012).

    Google Scholar 

  2. H. Amini, M. Mirrahimi, and P. Rouchon, “On Stability of Continuous-Time Quantum-Filters,” Proceedings of the 50th IEEE Conference on Decision and Control, 6242–6247 (2011).

    Google Scholar 

  3. S. Attal and Y. Pautrat, “From Repeated to Continuous Quantum Interactions,” Annales Henri Poincaré 7, 59–104 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. A. Barchielli and V. P. Belavkin, “Measurements Continuous in Time and a Posteriori States in Quantum Mechanics,” J. Physics A: Mathematical and General 24(7), (1991).

    Google Scholar 

  5. A. Barchielli and M. Gregoratti, Quantum Trajectories and Measurements in Continuous Time: the Diffusive Case (782, Springer Verlag, 2009).

    Book  Google Scholar 

  6. M. Bauer, T. Benoist, and D. Bernard, “Repeated Quantum Non-Demolition Measurements: Convergence and Continuous Time Limit,” Annales Henri Poincaré 14(4), 639–679 (2013).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. M. Bauer and D. Bernard, “Convergence of Repeated Quantum Non-Demolition Measurements and Wave Function Collapse,” Physical Review A 84(4), 44–103 (2011).

    Article  MathSciNet  Google Scholar 

  8. V. P. Belavkin, “Quantum Filtering of Markov Signals on a Background with Quantum White Quantum Noises,” Radiotekhn. i Elektron. 25(7), 1445–1453 (1980) [Radio Engrg. Electron. Phys. 25 (7), 76 (1980) (1981)].

    ADS  MathSciNet  Google Scholar 

  9. V. P. Belavkin, “Quantum Stochastic Calculus and Quantum Nonlinear Filtering,” J. Multivariate Analysis 42(2), 171–201 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  10. V. P. Belavkin, Eventum Mechanics of Quantum Trajectories: Continual Measurements, Quantum Predictions and Feedback Control (arXiv:math-ph/0702079, 2007).

    Google Scholar 

  11. T. Benoist and C. Pellegrini, Large Time Behavior and Convergence Rate for Quantum Filters under Standard non Demolition Conditions (Communications in Mathematical Physics, in press, 2013).

    Google Scholar 

  12. V. B. Braginsky and F. Y. Khalili, Quantum Measurement (Cambridge Univ Pr, 1995).

    Google Scholar 

  13. H. Carmichael, An Open Systems Approach to Quantum Optics (Springer-Verlag, 1993).

    MATH  Google Scholar 

  14. J. Dalibard, Y. Castin, and K. Mølmer, “Wave-Function Approach to Dissipative Processes in Quantum Optics,” Phys. Rev. Lett. 68(5), 580–583 (1992).

    Article  ADS  Google Scholar 

  15. E. B. Davies, Quantum Theory of Open Systems (Academic Press, 1976).

    MATH  Google Scholar 

  16. J. Gough and A. I. Sobolev, “Stochastic Schrödinger Equations as Limit of Discrete Filtering,” Open Systems & Information Dynamics 11(3), 235–255 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons (Oxford University Press, New York, 2006).

    Book  Google Scholar 

  18. C. Pellegrini, Existence, Uniqueness and Approximation for Stochastic Schrödinger Equation: the Poisson Case (arXiv preprint, arXiv:0709.3713, 2007).

    Google Scholar 

  19. C. Pellegrini, “Existence, Uniqueness and Approximation of a Stochastic Schrödinger Equation: the Diffusive Case,” The Annals of Probability, 2332–2353 (2008).

    Google Scholar 

  20. C. Pellegrini, “Markov Chains Approximation of Jump-Diffusion Stochastic Master Equations” Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 46(4), 924–948 (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. D. Petz, “Monotone Metrics on Matrix Spaces,” Linear Algebra and its Applications 244, 81–96 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  22. P. Rouchon, “Fidelity is a Sub-Martingale for Discrete-Time Quantum Filters,” IEEE Transactions on Automatic Control 56(11), 2743–2747 (2011).

    Article  MathSciNet  Google Scholar 

  23. C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.-M. Raimond, and S. Haroche, “Real-Time Quantum Feedback Prepares and Stabilizes Photon Number States,” Nature 477(7362), 73–77 (2011).

    Article  ADS  Google Scholar 

  24. A. Somaraju, I. Dotsenko, C. Sayrin, and P. Rouchon, “Design and Stability of Discrete-Time Quantum Filters with Measurement Imperfections,” Proceedings of American Control Conference, 5084–5089 (2012).

    Google Scholar 

  25. R. van Handel, Filtering, Stability, and Robustness (PhD thesis, California Institute of Technology, 2006).

    Google Scholar 

  26. R. van Handel, “The Stability of Quantum Markov Filters,” Infinite Dimensional Analysis, Quantum Probability and Related Topics 12(1), 153–172 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  27. H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2009).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Amini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, H., Pellegrini, C. & Rouchon, P. Stability of continuous-time quantum filters with measurement imperfections. Russ. J. Math. Phys. 21, 297–315 (2014). https://doi.org/10.1134/S1061920814030029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920814030029

Keywords

Navigation