Laser Physics

, Volume 22, Issue 4, pp 715–724

High peak power and sub-picosecond Fourier-limited pulse generation from passively mode-locked monolithic two-section gain-guided tapered InGaAs quantum-dot lasers

Authors

    • University of Dundee, School of Engineering, Physics and Mathematics
  • Y. Ding
    • University of Dundee, School of Engineering, Physics and Mathematics
  • M. A. Cataluna
    • University of Dundee, School of Engineering, Physics and Mathematics
  • E. U. Rafailov
    • University of Dundee, School of Engineering, Physics and Mathematics
  • L. Drzewietzki
    • Institut für Angewandte PhysikTechnische Universität Darmstadt
  • S. Breuer
    • Institut für Angewandte PhysikTechnische Universität Darmstadt
  • W. Elsaesser
    • Institut für Angewandte PhysikTechnische Universität Darmstadt
  • M. Rossetti
    • Politecnico di TorinoDipartimento di Elettronica
  • P. Bardella
    • Politecnico di TorinoDipartimento di Elettronica
  • T. Xu
    • Politecnico di TorinoDipartimento di Elettronica
  • I. Montrosset
    • Politecnico di TorinoDipartimento di Elettronica
  • I. Krestnikov
    • Innolume GmbH
  • D. Livshits
    • Innolume GmbH
  • M. Ruiz
    • III-V Lab, 1 Av Augustin FresnelCampus de Polytechnique
  • M. Tran
    • III-V Lab, 1 Av Augustin FresnelCampus de Polytechnique
  • Y. Robert
    • III-V Lab, 1 Av Augustin FresnelCampus de Polytechnique
  • M. Krakowski
    • III-V Lab, 1 Av Augustin FresnelCampus de Polytechnique
Semiconductor Lasers

DOI: 10.1134/S1054660X12040147

Cite this article as:
Nikitichev, D.I., Ding, Y., Cataluna, M.A. et al. Laser Phys. (2012) 22: 715. doi:10.1134/S1054660X12040147

Abstract

We report on the development of a new generation of high-power ultrashort pulse quantum-dot lasers with tapered gain section. Two device designs are proposed and fabricated, with different total lengths and absorber-to-gain-section length-ratios. These designs have been informed by numerical simulations of the dynamic mode-locking regimes and their dependence on the structural parameters. One device design demonstrated a record-high peak power of 17.7 W with 1.26 ps pulse width and a second design enabled the generation of a Fourier-limited 672 fs pulse width with a peak power of 3.8 W. A maximum output average power of 288 mW with 28.7 pJ pulse energy was also attained. In addition, the integrated timing jitter of 2.6 ps and far-field patterns are demonstrated.

Download to read the full article text

Copyright information

© Pleiades Publishing, Ltd. 2012