Skip to main content
Log in

Selective photoinactivation of C. albicans and C. dubliniensis with hypericin

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

The genus Candida includes different species that have the potential to invade and colonize the human body and C. albicans is the most common cause of skin, nail and mucous infections. The increasing resistance against antifungal drugs has renewed the search for new treatment procedures and antimicrobial photodynamic inactivation (PDI) is a propitious candidate. Hypericin (HY) has several wanted properties to be used as a photosensitizer in this technique including a high quantum yield of singlet oxygen generation, a high extinction coefficient near 600 nm, and a relatively low dark toxicity. Although the phototoxicity of HY on several tumor cells has been reported, the data concerning its photoactivity on microorganisms are scarce. The aim of this study was to obtain the experimental parameters to achieve an acceptable selective hypericinphotoinactivation of two species of Candida comparing with fibroblasts and epithelial cells which are the constituents of some potential host tissues, such mucosas, skin and cavities. Microorganisms and cells were incubated with the same HY concentrations and short incubation time followed by irradiation with equal dose of light. The best conditions to kill just Candida were very low HY concentration (0.1–0.4 μg ml−1) incubated by 10 min and irradiated with LED 590 nm with 6 J cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. G. Lambrechts, M. C. G. Aalders, and J. van Marle, Antimicrob. Agents Chemother. 49, 2026 (2005).

    Article  Google Scholar 

  2. Y. Y. Tian, L. L. Wang, and W. Wang, Laser Phys. 18, 1119 (2008).

    Article  ADS  Google Scholar 

  3. G. Monfrecola, E. M. Procaccini, M. Bevilacqua, A. Manco, G. Calabro, and P. Santoianni, Photochem. Photobiol. Sci. 4, 419 (2004).

    Article  Google Scholar 

  4. Z. Lukšiene and P. De Witte, Act. Med. Lituan. 9, 195 (2002).

    Google Scholar 

  5. K. T. de Oliveira, F. F. de Assis, A. O. Ribeiro, C. R. Neri, A. U. Fernandes, M. S. Baptista, N. P. Lopes, O. A. Serra, and Y. Iamamoto, J. Org. Chem. 74, 7962 (2009).

    Article  Google Scholar 

  6. K. T. de Oliveira, A. M. S. Silva, A. C. Tomé, M.G.P.M. S. Neves, C. R. Neri, V. S. Garcia, O. A. Serra, Y. Iamamoto, and J. A. S. Cavaleiro, Tetrahedron 64, 8709 (2008).

    Article  Google Scholar 

  7. Y. Liu, P. Chen, F. Zhang, L. Lin, G.-Q. Tang, and G.-G. Mu, Laser Phys. Lett. 6, 465 (2009).

    Article  ADS  Google Scholar 

  8. Y. Tan, C. S. Xu, X. S. Xia, H. P. Yu, D. Q. Bai, Y. He, and A. W. N. Leung, Laser Phys. Lett. 6, 321 (2009).

    Article  ADS  Google Scholar 

  9. Z. Diwu, Photochem. Photobiol. 61, 529 (1995).

    Article  Google Scholar 

  10. A. R. Bilia, S. Gallori, and F. F. Vincieri, Life Sci. 70, 3077 (2002).

    Article  Google Scholar 

  11. C. S. Xu and A. W. N. Leung, Laser Phys. Lett. 7, 68 (2010).

    Article  ADS  Google Scholar 

  12. H. Falk, J. Meyer, and M. Oberreiter, Monatsh Chem. 124, 339 (1993).

    Article  Google Scholar 

  13. A. Bernd, S. Simon, A. R. Bosca, S. Kippenberger, J. D. Alperi, J. Miquel, J. F. Villalba, D. Garcia, M. P. Mira, and R. Kaufmann, Photochem. Photobiol. 69, 218 (1999).

    Article  Google Scholar 

  14. A. Colasanti, A. Kisslinger, R. Liuzzi, M. Quarto, P. Riccio, G. Roberti, D. Tramontano, and F. Villani, J. Photochem. Photobiol. B 54, 103 (2000).

    Article  Google Scholar 

  15. M. Blank, G. Kostenich, G. Lavie, S. Kimelb, Y. Keisari, and A. Orenstein, Photochem. Photobiol. 76, 335 (2002).

    Article  Google Scholar 

  16. M. Van de Putte, T. Roskams, J. R. Vandenheede, P. Agostinis, and P. A. de Witte, Br. J. Cancer 92, 1406 (2005).

    Article  Google Scholar 

  17. V. Stupakova, L. Varinska, A. Mirossay, M. Sarissky, J. Mojzis, R. Dankovcik, P. Urdzik, A. Ostro, and L. Mirossay, Phytother. Res. 23, 827 (2009).

    Article  Google Scholar 

  18. N. Durán and P. S. Song, Photochem. Photobiol. 43, 677 (1986).

    Article  Google Scholar 

  19. A. Kamuhabwa, P. Agostinis, B. Ahmed, W. Landuyt, B. van Cleynenbreugel, H. van Poppel, and P. de Witte, Photochem. Photobiol. Sci. 3, 772 (2004).

    Article  Google Scholar 

  20. A. Kubin, F. Wierrani, U. Burner, G. Alth, and W. Grünberger, Curr. Pharm. Des. 11, 233 (2005).

    Article  Google Scholar 

  21. T. Kiesslich, B. Krammer, and K. Plaetzer, Curr. Med. Chem. 13, 2189 (2006).

    Article  Google Scholar 

  22. A. Jankowski, S. Jankowski, A. Mirończyk, and J. Niedbach, Pol. J. Microbiol. 54, 323 (2005).

    Google Scholar 

  23. M. Luthia, E. B. Gyengeb, M. Engstruma, M. Bredellb, K. Gratzb, H. Waltb, R. Gmurc, and C. Maake, Medic. Laser Appl. 24, 227 (2009).

    Article  Google Scholar 

  24. V. Engelhardt, B. Krammer, and K. Plaetzer, Photochem. Photobiol. Sci. 3, 365 (2010).

    Article  Google Scholar 

  25. M. Soncin, C. Fabris, A. Busetti, D. Dei, D. Nistri, G. Roncucci, and G. Jori, Photochem. Photobiol. Sci. 1, 815 (2002).

    Article  Google Scholar 

  26. A. Huygens, A. R. Kamuhabwaand, and P. A. M. de Witte, Eur. J. Pharm. Biopharm. 59, 461 (2005).

    Article  Google Scholar 

  27. A. P. J. Maestrin, A. O. Ribeiro, A. C. Tedesco, A. C. Tome, C. R. Neri, F. S. Vinhado, J. A. S. Cavaleiro, M. G. P. M. S. Neves, O. A. Serra, and P. R. J. Martins, J. Braz. Chem. Soc. 15, 923 (2004).

    Article  Google Scholar 

  28. R. A. Prates, E. G. da Silva, A. M. Yamada, L C. Suzuki, C. R. Paula, and M. S. Ribeiro, Laser Phys. 19, 1038 (2009).

    Article  ADS  Google Scholar 

  29. P. F. C. Menezes, V. S. Bagnato, R. M. Johnke, C. Bonnerup, C. H. Sibata, R. R. Allison, and J. R. Perussi, Laser Phys. Lett. 4, 546 (2007).

    Article  ADS  Google Scholar 

  30. F. Denizot and R. Lang, J. Immunol. Meth. 89, 271 (1986).

    Article  Google Scholar 

  31. C. Etzlstorfer, H. Falk, N. Müller, W. Schmitzberger, and U. G. Wagner, Monatsh Chem. 124, 751 (1993).

    Article  Google Scholar 

  32. M. C. Milanetto, H. Imasato, and J. R. Perussi, Laser Phys. Lett. 6, 611 (2009).

    Article  ADS  Google Scholar 

  33. R. S. Cavalcante, H. Imasato, V. S. Bagnato, and J. R. Perussi, Laser Phys. Lett. 6, 64 (2009).

    Article  ADS  Google Scholar 

  34. C. Bernal, results not published.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Perussi.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernal, C., Rodrigues, J.A.O., Guimarães, A.P.P. et al. Selective photoinactivation of C. albicans and C. dubliniensis with hypericin. Laser Phys. 21, 245–249 (2011). https://doi.org/10.1134/S1054660X1101004X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X1101004X

Keywords

Navigation