, Volume 17, Issue 4, pp 545-551

Control of qubits encoded in decoherence-free subspaces

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Decoherence-free subspaces protect quantum information from the effects of noise that is correlated across the physical qubits used to implement them. Given the ability to impose suitable Hamiltonians upon such a multi-qubit system, one can also implement a set of logical gates which enables universal computation on this information without compromising this protection. Real physical systems, however, seldom come with the correct Hamiltonians built-in, let alone the ability to turn them off and on at will. In the course of our development of quantum information processing devices based on liquid-state NMR, we have found the task of operating on quantum information encoded in decoherence-free subspaces rather more challenging than is commonly assumed. This contribution presents an overview of these challenges and the methods we have developed for overcoming them in practice. These methods promise to be broadly applicable to many of the physical systems proposed for the implementation of quantum information processing devices.