Skip to main content
Log in

Microscopic collective dynamics of atoms in the amorphous metallic alloy Ni33Zr67

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The structural properties and microscopic collective dynamics of atoms in the amorphous metallic alloy Ni33Zr67 are studied using molecular dynamics simulations with a pair-additive model potential. The calculated equilibrium structural and dynamic characteristics are compared with experimental data on neutron diffraction and inelastic X-ray scattering. Theoretical analysis of the structural relaxation of microscopic density fluctuations for amorphous metallic alloys is performed within the Lee’s recurrent relation approach. The results of theoretical calculations for the intensity of scattering I(k, ω) for the amorphous metallic alloy Ni33Zr67 are in good agreement with the results of computer simulation and experimental inelastic X-ray scattering data. The low-frequency excitations observed in the longitudinal current spectra are related to the vibrational motions of individual atom clusters, which include Ni and Zr atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. V. Mokshin and R. M. Yulmetyev, Microscopic Dynamics of Simple Liquids (Tsentr Innovats. Tekhnol., Kazan, 2006) [in Russian].

    Google Scholar 

  2. W. Clement, R. H. Willens, and P. Duwez, Nature 187, 869 (1960).

    Article  Google Scholar 

  3. A. L. Greer, Science 267, 1947 (1995).

    Article  Google Scholar 

  4. W. L. Johnson, MRS Bull. 24, 42 (1999).

    Google Scholar 

  5. R. M. Khusnutdinoff and A. V. Mokshin, Bull. Russ. Acad. Sci.: Phys. 74, 640 (2010).

    Article  Google Scholar 

  6. R. M. Khusnutdinoff, A. V. Mokshin, and I. I. Khadeev, J. Phys.: Conf. Ser. 394, 012012 (2012).

    Google Scholar 

  7. A. V. Mokshin, A. V. Chvanova, and R. M. Khusnutdinoff, Theor. Math. Phys. 171, 541 (2012).

    Article  Google Scholar 

  8. A. V. Nezhdanov, A. Yu. Afanaskin, A. V. Ershov, and A. I. Mashin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 1 (2012).

    Article  Google Scholar 

  9. T. Omoto, M. Arai, Y. Inamura, J.-B. Suck, S. M. Bennington, and K. Suzuki, J. Non-Cryst. Solids 232–234, 613 (1998).

    Article  Google Scholar 

  10. W. L. Johnson, J. Matter 54, 40 (2002).

    Google Scholar 

  11. Q. W. Yang and T. Zhang, J. Phys.: Condens. Matter 19, 086212 (2007).

    Google Scholar 

  12. T. Omoto, M. Arai, J.-B. Suck, and S. M. Bennington, J. Non-Cryst. Solids 312–314, 599 (2002).

    Article  Google Scholar 

  13. T. Scopigno, J.-B. Suck, R. Angelini, F. Albergamo, and G. Ruocco, Phys. Rev. Lett. 96, 135501 (2006).

    Article  Google Scholar 

  14. A. A. Dyshekov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4, 956 (2010).

    Article  Google Scholar 

  15. R. M. Khusnutdinov, R. M. Yulmetyev, and V. Yu. Shurygin, J. Phys.: Conf. Ser. 98, 022010 (2008).

    Google Scholar 

  16. A. V. Mokshin, S. O. Zabegaev, and R. M. Khusnutdinoff, Phys. Solid State 53, 570 (2011).

    Article  Google Scholar 

  17. A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinoff, and P. Hänggi,, J. Phys.: Condens. Matter 19, 046209 (2007).

    Google Scholar 

  18. R. Yulmetyev, R. Khusnutdinoff, T. Tezel, Y. Iravul, B. Tuzel, and P. Hanggi, Phys. A 388, 3629 (2009).

    Article  Google Scholar 

  19. M. H. Lee, Phys. Rev. Lett. 51, 1227 (1983).

    Article  Google Scholar 

  20. M. H. Lee, Phys. Rev. E 62, 1769 (2000).

    Article  Google Scholar 

  21. M. H. Lee, Phys. Rev. E 61, 3571 (2000).

    Article  Google Scholar 

  22. M. H. Lee, Phys. Rev. Lett. 85, 2422 (2000).

    Article  Google Scholar 

  23. U. Balucani, M. H. Lee, and V. Tognetti, Phys. Rep. 373, 409 (2003).

    Article  Google Scholar 

  24. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

    Article  Google Scholar 

  25. A. V. Mokshin, R. M. Yulmetyev, P. Hänggi, and V. Yu. Shurygin,, Phys. Rev. E 64, 057101 (2001).

    Article  Google Scholar 

  26. N. N. Bogolyubov, Problems of Dynamical Theory in Statictical Physics (Gostekhizdat, Moscow, Leningrad, 1946) [in Russian].

    Google Scholar 

  27. A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinov, and P. Hänggi, J. Exp. Theor. Phys. 103, 841 (2006).

    Article  Google Scholar 

  28. C. Hausleitner and J. Hafner, Phys. Rev. B 42, 5863 (1990).

    Article  Google Scholar 

  29. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    Google Scholar 

  30. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, New York, 2006).

    Google Scholar 

  31. A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinov, and P. Hänggi,, Phys. Solid State 48, 1760 (2006).

    Article  Google Scholar 

  32. P. Andonov and P. Chieux, J. Phys. (Paris) 46, C8–81 (1985).

    Article  Google Scholar 

  33. D. Lee, A. Lee, C. N. J. Wagner, L. E. Tanner, and A. K. Soper, J. Phys. (Paris) 43, C–19 (1982).

    Article  Google Scholar 

  34. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961).

    Google Scholar 

  35. A. V. Mokshin, R. M. Yulmetyev, and P. Hänggi, Phys. Rev. Lett. 95, 200601 (2005).

    Article  Google Scholar 

  36. G. Ruocco and F. Sette, J. Phys.: Condens. Matter 11, R259 (1999).

    Google Scholar 

  37. S. J. Cocking and P. A. Egelstaff, J. Phys. C 1, 507 (1968).

    Article  Google Scholar 

  38. R. M. Khusnutdinov, A. V. Mokshin, and R. M. Yulmetyev, J. Exp. Theor. Phys. 108, 417 (2009).

    Article  Google Scholar 

  39. A. V. Nagornyi, V. I. Petrenko, M. V. Avdeev, L. A. Bulavin, and V. L. Aksenov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4, 976 (2010).

    Article  Google Scholar 

  40. B. Ruffle, G. Guimbretiere, E. Courtens, R. Vacher, and G. Monaco, Phys. Rev. Lett. 96, 045502 (2006).

    Article  Google Scholar 

  41. R. M. Yulmetyev, A. V. Mokshin, P. Hänggi, and V. Yu. Shurygin, JETP Lett. 76, 147 (2002).

    Article  Google Scholar 

  42. A. V. Mokshin, R. M. Yulmetyev, T. Scopigno, and P. Hänggi, J. Phys.: Condens. Matter 15, 2235 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © R.M. Khusnutdinoff, A.V. Mokshin, I.I. Khadeev, 2014, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2014, No. 1, pp. 90–98.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khusnutdinoff, R.M., Mokshin, A.V. & Khadeev, I.I. Microscopic collective dynamics of atoms in the amorphous metallic alloy Ni33Zr67 . J. Surf. Investig. 8, 84–92 (2014). https://doi.org/10.1134/S1027451014010133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451014010133

Keywords

Navigation