1.

Baleva, L.S., Sokha, L.G., and Yakovleva, I.N., *Zdorov’e detei i radiatsiya: Aktual’nye problemy i resheniya* (The Health of Children and Radiation: Problems and Solutions), Baleva, L.S. and Tsaregorodtsev, A.D., Eds., Moscow: Media Sphere, 2001.

2.

*WHO Health Effects of the Chernobyl Accident and Special Health Care Programmes*, Bennett, B., Repacholi, M., and Carr, Z., Eds., Geneva, 2006.

3.

*UNSCEAR Non-Targeted and Delayed Effects of Exposure to Ionizing Radiation*, Vienna, 2004.

4.

Padovani, L., Stronati, L., and Mauro, F., et al., Cytogenetic Effect in Lymphocytes from Children Exposed to Radiation Fall-out after the Chernobyl Accident,

*Mutat. Res.*, 1997, vol. 395, pp. 249–254.

PubMed5.

Gemignani, F., Balardin, M., and Maggiani, F., et al., Chromosome Aberrations in Lymphocytes and Clastogenetic Factors in Plasma Detected in Belarus Children 10 Years after Chernobyl Accident,

*Mutat. Res.*, 1999, vol. 446, pp. 245–253.

PubMed6.

Fucic, A., Brunborg, G., Lasan, R., et al., Genomic Damage in Children Accidentally Exposed to Ionizing Radiation: A Review of the Literature,

*Mutat. Res.*, 2008, vol. 658, pp. 111–123.

CrossRefPubMed7.

Sevan’kaev, A.V., Mikhailova, G.F., Potetnya, O.I., and Tsepenko, V.V., Results of Dynamic Cytogenetic Study of Children and Teenagers Living in Areas, Radioactively Contaminated after the Chernobyl Accident, *Radiat. Biol. Radioecol.*, 2005, vol. 45, pp. 5–15.

8.

Stepanova, E.I., Misharina, E.I., and Vdovenko, V.Yu., Remote Cytogenetic Effects in Children Exposed in Prenatal Period after the Chernobyl Accident, *Radiat. Biol. Radioecol.*, 2002, vol. 42, pp. 700–703.

9.

Little, J.B., Radiation-Induced Genomic Instability,

*Int. J. Radiat. Biol.*, 1998, vol. 74, pp. 663–671.

CrossRefPubMed10.

Mazurik, V.K. and Mikhailov, V.F., Radiation-Induced Genome Instability: The Phenomenon, Molecular Mechanisms, Pathogenetical Significance, *Radiation Biol. Radioecol.*, 2001, vol. 41, pp. 271–289.

11.

Morgan, W.F., Non-Targeted and Delayed Effects of Exposure to Ionizing Radiation: I. Radiation-Induced Genomic Instability and Bystander Effects in vitro,

*Radiat. Res.*, 2003, vol. 159, pp. 567–580.

CrossRefPubMed12.

Pilinska, M.A., Dibski S.S., Dibska, O.V., and Pedan, L.R., Elucidate Chromosomal Instability in Offsprings of Fathers Irradiated as the Results of Chernobyl NPP, *Tsitol. Genet.*, 2005, vol. 39, pp. 32–40.

13.

Suskov, I.I. and Kuzmina, N.S., The Problem of Induced Genomic Instability in the Organism of Children under Conditions of Long-Term Exposure to Small Radiation Doses, *Radiat. Biol. Radioecol.*, 2001, vol. 41, no. 5, pp. 606–614.

14.

Kuzmina, N.S. and Suskov, I.I., Expression of Genomic Instability in Lymphocytes of Children Exposed to Prolonged Action of the Radiation Factor, *Radiat. Biol. Radioecol.*, 2002, vol. 42, pp. 735–739.

15.

Agadzhanyan, A. and Suskov, I., Modeling of Genomic Instability Using the Method of Biological Dose Accumulation after Fractional γ-Irradiation of Lymphocytes of Peripheral Blood of Children, Constantly Living in Radioactively Contaminated Areas and in Children of Liquidators of Accident at the Chernobyl Nuclear Power Plant, in *Sovremennye problemy genetiki, radiobiologii, radioekologii i evolyutsii* (Modern Problems of Genetics, Radioecology, and Evolution), Proc. 2nd Int. Conf. on the Occasion of the 105th Anniversary of N.V. Timofeev-Ressovsky, Korogodina, V.L., Chin’i, A.A., and Durante, M., Eds., Dubna: JINR, 2007, vol. 1, pp. 220–232.

16.

Dubinin, N.P., *Potentsial’nye izmeneniya v DNK i mutatsii* (Potential Changes in DNA and Mutations), Moscow: Nauka, 1978.

17.

Vorobtsova, I.E., Transgenerational Transmission of Radiation Induced Genomic Instability, *Radiat. Biol. Radioecol.*, 2006, vol. 46, pp. 441–446.

18.

Suskov, I.I., Agadzhanyan, A.V., Kuzmina, N.S., et al., The Problem of Transgeneration Phenomenon of Genome Instability in Ailing Children of Different Age Groups after the Accident at the Chernobyl Nuclear Power Plant, *Radiat. Biol. Radioecol.*, 2006, vol. 46, pp. 466–474.

19.

Suskov, I.I., Kuzmina, N.S., Suskova, V.S., et al., Individual Characteristics of Transgenerational Genomic Instability in Children of Liquidators of the Accident at the Chernobyl Nuclear Power Plant (Cytogenetic and Immunogenetic Characteristics), *Radiat. Biol. Radioecol.*, 2008, vol. 48, pp. 278–286.

20.

Morgan, W.F., Non-Targeted and Delayed Effects of Exposure to Ionizing Radiation: II. Radiation-Induced Genomic Instability and Bystander Effects in vivo, Clastogenic Factors and Transgenerational Effects,

*Radiat. Res.*, 2003, vol. 159, pp. 581–596.

CrossRefPubMed21.

Dubrova, Y.E., Radiation-Induced Transgenerational Instability,

*Oncogene*, 2003, vol. 22, pp. 7087–7093.

CrossRefPubMed22.

Barber, R.C. and Dubrova, Y.E., The Offspring of Irradiated Parents, Are They Stable?,

*Mutat. Res.*, 2006, vol. 598, pp. 50–60.

PubMed23.

Natarajan, A.T., Induced Transgenerational Genetic Effects in Rodents and Human,

*J. Radiat. Res.*, 2006, vol. 47, pp. 39–43.

CrossRef24.

Perry, P. and Wolff, S., New Giemsa Method for Differential Staining of Sister Chromatids,

*Nature*, 1974, vol. 251, pp. 156–157.

CrossRefPubMed25.

*Method of Human Chromosome Aberration Analysis*, Buckton, K. and Evans, H., Eds., Geneva: WHO, 1976.

26.

Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment, *Tech. Rep. Ser.*, Vienna: Int. Atomic Energy, 1986, no. 260, pp. 1–69.

27.

Bratanov, Br., et al., Eds., *Klinicheskaya pediatriya* (Clinical Pediatric), Sofia: Meditsina i fizkul’tura, 1987, vol. 1, pp. 41–48.

28.

Baranov, V.S. and Kuznetsova, T.V., *Tsitogenetika embrional’nogo razvitiya cheloveka: nauchno-prakticheskie aspekty*, (Cytogenetics of Human Embryonic Development: Scientific Practical Aspects), St. Petersburg: Izd. N-L., 2007

29.

Streffer, C. and Tanooka, H., Biological Effects after Small Radiation Doses,

*Int. J. Radiat. Biol.*, 1996, vol. 69, pp. 629–272.

CrossRef30.

Burlakova, E.B., Goloshchapov, A.N., Zhizhina, G.P., and Konradov, A.A., New Aspects of Regulatory Action of Low Intensity Radiation, *Radiat. Biol. Radioecol.*, 1999, vol. 39, pp. 26–34.

31.

Scott, B.R., It,s Time for a New Low-Dose-Radiation Risk Assessment Paradigm-One That Acknowledges Hormesis,

*Dose Response*, 2008, vol. 6940, pp. 333–351.

CrossRef32.

Pelevina, I.I., Aleshchenko, A.V, Afanasjev, G.G., et al., Phenomenon of enhanced Radiosensitivity of Lymphocytes after Low-Dose Adaptive Irradiation, *Radiat. Biol. Radioecol.*, 2000, vol. 40, pp. 544–548.

33.

Aghajanyan, A.V. and Suskov, I.I., Transgenerational Genomic Instability in Children of Irradiated Parents as a Result of the Chernobyl Nuclear Accident,

*Mutat. Res.*, 2009, vol. 671, pp. 52–57.

PubMed34.

Suskov, I.I. and Kuzmina, N.S., Polygenomic Realization of Mutagenic Effects in the Organism of People Exposed to Low-Dose Radiation, *Radiat. Biol. Radioecol.*, 2002, vol. 42, pp. 150–152.