Skip to main content
Log in

Mitochondrial DNA variation pattern in larches of Eastern Siberia and the Far East

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genetic variation has been studied in 32 Eastern Siberian and Far Eastern populations of Larix Mill. with the use of three mitochondrial markers based on polymerase chain reaction. Eight multilocus haplotypes with a heterogeneous spatial distribution (G ST = 0.788, N ST = 0.829) have been found, which indicates limited gene flows between populations. Several geographic regions with specific larch haplotype sets have been determined: (1) Japan, (2) southern Sakhalin and the Kuril Islands, (3) Primor’e and Korea, (4) Kamchatka, and (5) Eastern Siberia and the northern Far East. The haplotype fixed in the Kamchatka is absent in the Magadan oblast or Chukotka but is present in southern Primor’e and Sakhalin Island. This may be explained by either the postglacial recolonization of Kamchatka by larch that spread from Primor’e through Sakhalin and the Kuril Islands or its survival through the last glacial maximum in the Kamchatka Peninsula. The biogeography of larch and other woody plants indicate that boreal species have a common history of the colonization of Kamchatka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huntley, B. and Birks, H.J.B., An Atlas of Past and Present Pollen Maps for Europe: 0-13000 Years Ago, Cambridge: Cambridge Univ. Press, 1983.

    Google Scholar 

  2. Willis, K.J. and van Andel, T.H., Trees Or No Trees? The Environments of Central and Eastern Europe during the Last Glaciation, Quat. Sci. Rev., 2004, vol. 23, pp. 2369–2387.

    Article  Google Scholar 

  3. Petit, R.J., Aguinagalde, I., de Beaulieu, J.L., et al., Glacial Refugia: Hotspots but Not Melting Pots of Genetic Diversity, Science, 2003, vol. 300, no. 5625, pp. 1563–1565.

    Article  PubMed  CAS  Google Scholar 

  4. Boyarskaya, T.D., Comparison of Paleoclimate Variation Amplitudes in the Late Pleistocene and Holocene Epochs of Different Regions of the Soviet Union, in Paleoklimaty pozdnelednikov’ya i golotsena (Paleoclimates of the Late Glaciation and Holocene), Moscow: Nauka, 1989, pp. 85–90.

    Google Scholar 

  5. Kremenetskii, K.V., Historical Ranges of the Main Conifers of Siberia in the Holocene, in Korotkoperiodnye i rezkie landshaftno-klimaticheskie izmeneniya za poslednie 15000 let (Short-Term and Sharp Landscape Climatic Changes during the Past 15 000 Years), Moscow: Inst. Geologii Ross. Akad. Nauk, 1994, pp. 160–210.

    Google Scholar 

  6. Sukachev, V.N., On Two More Tree Species Valuable for Forestry, Tr. Lesn. Khoz. Lesn. Prom., 1931, vol. 10, pp. 1–12.

    Google Scholar 

  7. Kolesnikov, B.P., On the Systematics and Developmental History of Larches from the Section Pauciseriales Patcshke, in Materialy po istorii flory i rastitel’nosti SSSR (Materials on the History of the Flora and Vegetation of the Soviet Union), Moscow: Akad. Nauk SSSR, 1946, vol. 2, pp. 321–364.

    Google Scholar 

  8. Dylis, N.V., Listvennitsa Vostochnoi Sibiri i Dal’nego Vostoka (Larches of Eastern Siberia and the Far East), Moscow: Akad. Nauk SSSR, 1961.

    Google Scholar 

  9. Semerikov, V.L., Semerikov, L.F., and Lascoux, M., Intra-and Interspecific Allozyme Variability in Eurasian Larix Mill. Species, Heredity, 1999, vol. 82, pp. 193–204.

    Article  CAS  Google Scholar 

  10. Semerikov, V.L. and Lascoux, M., Nuclear and Cytoplasmic Variation within and between Eurasian Larix (Pinaceae) Species, Am. J. Bot., 2003, vol. 90, no. 8, pp. 1113–1123.

    CAS  Google Scholar 

  11. Bobrov, E.G., Lesoobrazuyushchie khvoinye SSSR (Forest-Forming Conifers of the Soviet Union), Leningrad: Nauka, 1978.

    Google Scholar 

  12. Palmer, J.D, Mitochondrial DNA in Plant Systematics: Applications and Limitations, in Molecular Systematics of Plants, Soltis, P.S., Soltis, D.E., and Doyle, J.J., Eds., New York: Chapman and Hall, 1992, pp. 36–49.

    Google Scholar 

  13. Iroshnikov, A.I., Geographic Cultures of Conifers in Southern Siberia, in Geograficheskie kul’tury i plantatsii khvoinykh v Sibiri (Geographic Cultures and Plantations of Conifers in Siberia), Manin, E.G. and Iroshnikov, A.I., Eds., Novosibirsk: Nauka, 1977.

    Google Scholar 

  14. Devey, M.E., Bell, J.S., Smith, D.N., et al., A Genetic Linkage Map for Pinus radiata Based on RFLP, RAPD and Microsatellite Markers, Theor. Appl. Genet., 1996, vol. 92, pp. 673–679.

    Article  CAS  Google Scholar 

  15. Dumolin-Lapegue, S., Pemonge, M.H., and Petit, R.J., An Enlarged Set of Consensus Primers for the Study of Organelle DNA in Plants, Mol. Ecol., 1997, vol. 6, pp. 393–397.

    Article  PubMed  CAS  Google Scholar 

  16. Semerikov, V.L., Vendramin, G.G., Sebastiani, F., and Lascoux, M., RAPD-Derived, PCR-Based Mitochondrial Markers for Larix Species and Their Usefulness in Phylogeny, Cons. Genet., 2006, vol. 7, no. 4, pp. 621–625.

    Article  CAS  Google Scholar 

  17. Schneider, S., Roessli, D., and Excoffier, L., Arlequin Ver. 2.000: A Software for Population Genetics Data Analysis, Univ. Geneva: Genetics and Biometry Laboratory, 2000.

  18. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.

    Google Scholar 

  19. Pons, O. and Petit, R.J., Measuring and Testing Genetic Differentiation with Ordered versus Unordered Alleles, Genetics, 1996, vol. 144, pp. 1237–1245.

    PubMed  CAS  Google Scholar 

  20. Petit, R.J., Duminil, J., Fineschi, S., et al., Comparative Organization of Chloroplast, Mitochondrial and Nuclear Diversity in Plant Populations, Mol. Ecol., 2005, vol. 14, pp. 689–701.

    Article  PubMed  CAS  Google Scholar 

  21. Jaramillo-Correa, J.P. and Bousquet, J., Mitochondrial Genome Recombination in the Zone of Contact between Two Hybridizing Conifers, Genetics, 2005, vol. 171, no. 4, pp. 1951–1962.

    Article  PubMed  CAS  Google Scholar 

  22. Tarasov, P.E., Volkova, V.S., Webb, T., et al., Last Glacial Maximum Biomes Reconstructed from Pollen and Plant Macrofossil Data from Northern Eurasia, J. Biogeogr., 2000, vol. 27, pp. 609–620.

    Article  Google Scholar 

  23. Spasskaya, I.I., Astakhov, V.I., Glushkova, O.Yu., et al., Razvitie landshaftov i klimata Severnoi Evrazii: Pozdnii pleistotsen-golotsen; elementy prognoza, issue 1: Regional’naya paleogeografiya (Landscape and Climate Development in Northern Eurasia: The Late Pleistocene-Holocene and Elements of Prognosis, issue 1: Regional Palaeogeography), Moscow: Nauka, 1993.

    Google Scholar 

  24. Brubaker, L.B., Anderson, P.M., Edwards, M.E., and Lozhkin, A.V., Beringia as a Glacial Refugium for Boreal Trees and Shrubs: New Perspectives from Mapped Pollen Data, J. Biogeogr., 2005, vol. 32, pp. 833–848.

    Article  Google Scholar 

  25. Fairbanks, R.G., A 17 000-Year Glacio-Eustatic Sea Level Record; Influence of Glacial Melting Rates on the Younger Dryas Event and Deep-Ocean Circulation, Nature, 1989, vol. 342, no. 6250, pp. 637–642.

    Article  Google Scholar 

  26. Adams, R.P. and Pandey, R.N., Analysis of Juniperus communis and Its Varieties Based on DNA Fingerprinting, Biochem. System. Ecol., 2003, vol. 31, pp. 1271–1278.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.L. Semerikov, M.A. Polezhaeva, 2007, published in Genetika, 2007, vol. 43, No. 6, pp. 789–799.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semerikov, V.L., Polezhaeva, M.A. Mitochondrial DNA variation pattern in larches of Eastern Siberia and the Far East. Russ J Genet 43, 646–652 (2007). https://doi.org/10.1134/S1022795407060075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795407060075

Keywords

Navigation