, Volume 42, Issue 5, pp 468-475
Date: 17 May 2006

RAPD analysis of genetic diversity and population genetic structure of Stipa krylovii reshov. in Inner Mongolia steppe

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Random amplified polymorphic DNA (RAPD) analysis was used to characterize the genetic diversity and population genetic structure of Stipa krylovii populations in Inner Mongolia steppe of North China. Thirteen 10-bp oligonucleotide primers, which generated 237 RAPD bands, were used to analyze 90 plants of five populations from three regions, meadow steppe, typical steppe and desert steppe, from the east to the west. The genetic diversity of Stipa krylovii that was revealed by observed number of alleles (na), expected number of alleles (ne), Nei’s diversity index (h), Shannon’s diversity index (H), amplificated loci, polymorphic loci and the percentage of polymorphic loci (PPB) increased from the east to the west. The Pearson’s correlation analysis between genetic diversity parameters and ecological parameters indicated that the genetic diversity of Stipa krylovii was associated with precipitation and cumulative temperature variations along the longitude (humidity were calculated by precipitation and cumulative temperature). Dendrogram based on Jaccard’s genetic distance showed that the individuals from the same population formed a single subgroup. Although most variation (56.85%) was within populations, there was high genetic differentiation among populations of Stipa krylovii, high differentiation within and between regions by AMOVA analysis. Either Nei’s unbiased genetic distance (G ST) or gene flow (Nm) among pairwise populations was not correlated with geographical distance by Mantel’s test (P > 0.05), suggesting that there was no consistency with the isolation by distance model in these populations. Natural selection may have played a role in affecting the genetic diversity and population structure, but habitat destruction and degradation in northem grassland in China may be the main factor responsible for high genetic differentiation among populations, within and among regions.

The text was submitted by the authors in English.