Skip to main content
Log in

Pigment composition, optical properties, and resistance to photodamage of the microalga Haematococcus pluvialis cultivated under high light

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The relationships between changes in cell suspension absorbance, pigment composition, and resistance to photodamage were investigated in the microalga Haematococcus pluvialis Flotow em. Wille (Chlorophyta) IPPAS H-239 cultivated under high level of photosynthetically active radiation (PAR, 50 W/m2). When the green flagellated cells of H. pluvialis lacking astaxanthin (Ast) and possessing low (<0.5) carotenoid/chlorophyll ratio were irradiated by intense light (2500 W/m2 PAR), rapid and synchronous photobleaching of 70–80% of chlorophyll (Chl) and carotenoids (Car) was observed. By contrast, the rate of pigment photobleaching in cells with Car/Chl > 1, which retained high Chl content (> 0.6 fmol/cell) and accumulated significant amounts of Ast, was two times lower than in the green cells. Red aplanospores, with Car/Chl > 10, containing high amounts of Ast and low amounts of Chl (> 0.8 and < 0.1 fmol/cell, respectively) were resistant to photodestruction. The extent of cell resistance to photobleaching correlated closely with an increase in contribution of Car to light absorption by H. pluvialis cell suspensions. The build up of Ast during acclimation to high light was accompanied by a gradual increase in the optical density ratio OD480/OD678, whereas synchronous (OD480/OD678 ≈ const; r 2 > 0.99) and profound (>20%) bleaching of Car and Chl absorption bands was characteristic of photodamage. The spectral features of photoacclimation and photodamage revealed in this work can be used for nondestructive diagnostics of photodamage in H. pluvialis cultures and for on-line assessment of cell resistance to photooxidative death. The results are discussed with respect to the nondestructive monitoring of laboratory and production cultures of H. pluvialis and their protection from photooxidative death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ast:

astaxanthin

Car:

carotenoid(s)

Chl:

chlorophyll(s)

PAR:

photosynthetically active radiation

PSA:

photosynthetic apparatus

PUFA:

polyunsaturated fatty acids

ROS:

reactive oxygen species

References

  1. Bukhov, N.G., Dynamic Light Regulation of Photosynthesis (A Review), Russ. J. Plant Physiol., 2001, vol. 51, pp. 742–753.

    Article  Google Scholar 

  2. Demmig-Adams, B. and Adams, W., Photoprotection in an Ecological Context: The Remarkable Complexity of Thermal Energy Dissipation, New Phytol., 2006, vol. 172, pp. 11–21.

    Article  CAS  PubMed  Google Scholar 

  3. Asada, K., Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions, Plant Physiol., 2006, vol. 114, pp. 391–396.

    Article  Google Scholar 

  4. Foyer, C. and Noctor, G., Oxygen Processing in Photosynthesis: Regulation and Signalling, New Phytol., 2000, vol. 146, pp. 359–388.

    Article  CAS  Google Scholar 

  5. Hagen, C., Braune, W., and Björn, L., Functional Aspects of Secondary Carotenoids in Haematococcus lacustris (Volvocales): 3. Action as a Sunshade, J. Phycol., 1994, vol. 30, pp. 241–248.

    Article  CAS  Google Scholar 

  6. Zhekisheva, M., Boussiba, S., Khozin-Goldberg, I., Zarka, A., and Cohen, Z., Accumulation of Oleic Acid in Haematococcus pluvialis (Chlorophyceae) under Nitrogen Starvation or High Light Is Correlated with That of Astaxanthin Esters, J. Phycol., 2002, vol. 38, pp. 325–331.

    Article  CAS  Google Scholar 

  7. Wang, B., Zarka, A., Trebst, A., and Boussiba, S., Astaxanthin Accumulation in Haematococcus pluvialis (Chlorophyceae) as an Active Photoprotective Process under High Irradiance, J. Phycol., 2003, vol. 39, pp. 1116–1124.

    Article  CAS  Google Scholar 

  8. Hu, Z., Li, Y., Sommerfeld, M., Chen, F., and Hu, Q., Enhanced Protection against Oxidative Stress in an Astaxanthin-Overproduction Haematococcus Mutant (Chlorophyceae), Eur. J. Phycol., 2008, vol. 43, pp. 365–376.

    Article  CAS  Google Scholar 

  9. Solovchenko, A.E., Khozin-Goldberg, I., DidiCohen, S., Cohen, Z., and Merzlyak, M.N., Effects of Light and Nitrogen Starvation on the Content and Composition of Carotenoids of the Green Microalga Parietochloris incisa, Russ. J. Plant Physiol., 2008, vol. 55, pp. 455–462.

    Article  CAS  Google Scholar 

  10. Bar, E., Rise, M., Vishkautsan, M., and Arad, S., Pigment and Structural Changes in Chlorella zofingiensis upon Light and Nitrogen Stress, J. Plant Physiol., 1995, vol. 146, pp. 527–534.

    CAS  Google Scholar 

  11. Hanagata, N. and Dubinsky, Z., Secondary Carotenoid Accumulation in Scenedesmus komarekii (Chlorophyceae, Chlorophyta), J. Phycol., 1999, vol. 35, pp. 960–966.

    Article  CAS  Google Scholar 

  12. Ben-Amotz, A., Shaish, A., and Avron, M., Mode of Action of the Massively Accumulated β-Carotene of Dunaliella bardawil in Protecting the Alga against Damage by Excess Irradiation, Plant Physiol., 1989, vol. 86, pp. 1286–1291.

    Article  Google Scholar 

  13. Rabbani, S., Beyer, P., Lintig, J., Hugueney, P., and Kleinig, H., Induced β-Carotene Synthesis Driven by Triacylglycerol Deposition in the Unicellular Alga Dunaliella bardawil, Plant Physiol., 1998, vol. 116, pp. 1239–1248.

    Article  CAS  PubMed  Google Scholar 

  14. Solovchenko, A.E. and Merzlyak, M.N., Screening of Visible and UV Radiation as a Photoprotective Mechanism in Plants, Russ. J. Plant Physiol., 2008, vol. 55, pp. 719–737.

    Article  CAS  Google Scholar 

  15. Torzillo, G., Goksan, T., Faraloni, C., Kopecky, J., and Masojdek, J., Interplay between Photochemical Activities and Pigment Composition in an Outdoor Culture of Haematococcus pluvialis during the Shift from the Green to Red Stage, J. Appl. Phycol., 2003, vol. 15, pp. 127–136.

    Article  CAS  Google Scholar 

  16. Fabregas, J., Dominguez, A., Maseda, A., and Otero, A., Interactions between Irradiance and Nutrient Availability during Astaxanthin Accumulation and Degradation in Haematococcus pluvialis, Appl. Microbiol. Biotechnol., 2003, vol. 61, pp. 545–551.

    CAS  PubMed  Google Scholar 

  17. Sussela, M. and Toppo, K., Haematococcus pluvialis—a Green Alga, Richest Natural Source of Astaxanthin, Curr. Sci., 2006, vol. 90, pp. 1602–1603.

    Google Scholar 

  18. Vidhyavathi, R., Venkatachalam, L., Sarada, R., and Ravishankar, G., Regulation of Carotenoid Biosynthetic Genes Expression and Carotenoid Accumulation in the Green Alga Haematococcus pluvialis under Nutrient Stress Conditions, J. Exp. Bot., 2008, vol. 59, pp. 1409–1418.

    Article  CAS  PubMed  Google Scholar 

  19. Boussiba, S., Carotenogenesis in the Green Alga Haematococcus pluvialis: Cellular Physiology and Stress Response, Physiol Plant., 2000, vol. 108, pp. 111–117.

    Article  CAS  Google Scholar 

  20. Pratt, R., Studies on Chlorella vulgaris. XI. Relation between Surface Tension and Accumulation of Chlorellin, Am. J. Bot., 1948, vol. 35, pp. 634–637.

    Article  CAS  Google Scholar 

  21. Wellburn, A., The Spectral Determination of Chlorophyll a and Chlorophyll b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution, J. Plant Physiol., 1994, vol. 144, pp. 307–313.

    CAS  Google Scholar 

  22. Merzlyak, M.N., Chivkunova, O.B., Maslova, I.P., Naqvi, K.R., Solovchenk, o A.E., and Klyachko-Gurvich, G.L., Light Absorption and Scattering by Cell Suspensions of Some Cyanobacteria and Microalgae, Russ. J. Plant Physiol., 2008, vol. 55, pp. 420–425.

    Article  CAS  Google Scholar 

  23. Czygan, F., Blood-Rain and Blood-Snow: Nitrogen-Deficient Cells of Haematococcus pluvialis and Chlamydomonas nivalis, Arch. Mikrobiol., 1970, vol. 74, pp. 69–76.

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi, M. and Sakamoto, Y., Singlet Oxygen Quenching Ability of Astaxanthin Esters from the Green Alga Haematococcus pluvialis, Biotechnol. Lett., 1999, vol. 21, pp. 265–269.

    Article  CAS  Google Scholar 

  25. Kobayashi, M., In Vivo Antioxidant Role of Astaxanthin under Oxidative Stress in the Green Alga Haematococcus pluvialis, Appl. Microbiol. Biotechnol., 2000, vol. 54, pp. 550–555.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Solovchenko.

Additional information

Original Russian Text © A.E. Solovchenko, O.B. Chivkunova, I.P. Maslova, 2011, published in Fiziologiya Rastenii, 2011, Vol. 58, No.1, pp. 12–20.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solovchenko, A.E., Chivkunova, O.B. & Maslova, I.P. Pigment composition, optical properties, and resistance to photodamage of the microalga Haematococcus pluvialis cultivated under high light. Russ J Plant Physiol 58, 9–17 (2011). https://doi.org/10.1134/S1021443710061056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443710061056

Keywords

Navigation