Skip to main content
Log in

Cloning and analysis of a novel conserved membrane zinc-metalloprotease family from Solanum surattense

  • Experimental Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Peptidases occur naturally in all organisms and their genes comprise 1–5% of the total number of genes. Genetic, biochemical, and molecular approaches used in recent years led to the identification and characterization of several plant organelle proteases, all of them being homologous to bacterial proteases best characterized in Escherichia coli. Here we report isolating and characterizing three novel genes, namely Sszn-mp1, Sszn-mp2, and SsZn-mp3 from Solanum surattense. To identify the subcellular location, structures, and functions of these three genes, integrated genomic approaches of data mining, expression profiling, and bioinformatic predictions were used. Sszn-mp is found to be constitutively expressed in tissues and regulated by various stimuli. Analysis of eight zinc-metalloproteases (Zn-MPs) deduced or assembled from Arabidopsis thaliana, tomato, potato, cotton, barley, sugarcane, and rice and four Zn-MPs from cyanobacteria (blue-green algae) in the GenBank database reveals that these proteins belong to a novel conserved membrane zinc-metalloprotease family. The plant Zn-MP members share more than 62% overall identity with SsZn-MP3, whereas four putative ATP-dependent zinc-proteases of cyanobacteria have low identity with SsZn-MP3 and their N-termini are about 110 amino acids shorter than those of plant Zn-MPs. The Zn-MP homologous sequences are found neither in other eukaryotic nor prokaryotic databases, suggesting that this family is specific to plants and cyanobacteria. The plant Zn-MP genes encoding membrane proteins are potentially targeted to chloroplast and plasma membranes, and the bacterial Zn-MPs are targeted to the cytoplasmic membrane, and their N-terminal targeting peptides are cleaved off for targeting the mature proteins to their subcellular compartments. The Zn-MP proteins contain a conserved zinc-binding site (HEAGHX19E/DX46∼48EX7E), a potential G-protein coupled receptors family 1 signature, and a triplet motif (N-R/K-F) in plant Zn-MPs, a D/E-R-Y motif in the four bacterial Zn-MPs, suggesting that the different mature forms of Zn-MPs may function as proteases and/or signal receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aa:

amino acid

ER:

endoplasmic reticulum

EST:

expressed sequence tag

GPCR:

G-protein coupled receptor

GPI:

glycosylated phosphatidylinositol

MeJa:

methyl jasmonate

ORF:

open reading frame

PCR:

polymerase chain reaction

RT-PCR:

real time PCR

SA:

salicylic acid

TMD:

transmembrane domain

UTR:

untranslated region

Zn-MP:

zinc-metalloprotease

GrZn-MP:

Zn-MP from Gossipium raimondii

References

  1. Moberg, P., Stahl, A., Bhushan, S., Wright, S.J., Eriksson, A., Bruce, B.D., and Glaser, E., Characterization of a Novel Zinc Metalloprotease Involved in Degrading Targeting Peptides in Mitochondria and Chloroplasts, Plant J., 2003, vol. 36, pp. 616–628.

    Article  PubMed  CAS  Google Scholar 

  2. Hedstrom, L., Serine Protease Mechanism and Specificity, Chem. Rev., 2002, vol. 102, pp. 4501–4523.

    Article  PubMed  CAS  Google Scholar 

  3. Southan, C., A Genomic Perspective on Human Proteases as Drug Targets, Drug Discov. Today, 2001, vol. 6, pp. 681–688.

    Article  PubMed  CAS  Google Scholar 

  4. Puente, X.S. and Lopez-Otin, C., A Genomic Analysis of Rat Proteases and Protease Inhibitors, Genome Res., 2004, vol. 14, pp. 609–622.

    Article  PubMed  CAS  Google Scholar 

  5. Rawlings, N.D., Tolle, D.P., and Barrett, A.J., MEROPS: The Peptidase Database, Nucleic Acids Res., 2004, vol. 32, pp. D160–D164.

    Article  PubMed  CAS  Google Scholar 

  6. Schaller, A., A Cut above the Rest: The Regulatory Function of Plant Proteases, Planta, 2004, vol. 220, pp. 183–197.

    Article  PubMed  CAS  Google Scholar 

  7. Gomis-Ruth, F.X., Structural Aspects of the Metzincin Clan of Metalloendopeptidases, Mol. Biotechnol., 2003, vol. 24, pp. 157–202.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, H.Z., Hackbarth, C.J., Chansky, K.M., and Chambers, H.F., A Proteolytic Transmembrane Signaling Pathway and Resistance to beta-Lactams in Staphylococci, Science, 2001, vol. 291, pp. 1962–1965.

    Article  PubMed  CAS  Google Scholar 

  9. Kheradmand, F. and Werb, Z., Shedding Light on Sheddases: Role in Growth and Development, BioEssay, 2002, vol. 24, pp. 8–12.

    Article  CAS  Google Scholar 

  10. Rawlings, N.D. and Barrett, A.J., Evolutionary Families of Metallopeptidases, Proteolytic Enzymes: Aspartic and Metallo Peptidases, Abelson, J.N., Simon, M.I., and Barrett, A.J., Eds., San Diego: Academic, 1995, pp. 183–228.

    Chapter  Google Scholar 

  11. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., Basic Local Alignment Search Tool, J. Mol. Biol., 1990, vol. 215, pp. 403–410.

    Article  PubMed  CAS  Google Scholar 

  12. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Wheeler, D.L., GenBank: Update, Nucleic Acids Res., 2004, vol. 32, pp. D23–D26.

    Article  PubMed  CAS  Google Scholar 

  13. Pearson, W.R., Rapid and Sensitive Sequence Comparison with Fastp and Fasta, Nucleic Acids Res., 1990, vol. 183, pp. 63–98.

    CAS  Google Scholar 

  14. Thompson, J.D., Higgins, D.G., and Gibson, T.J., Clustal-W—Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice, Nucleic Acids Res., 1994, vol. 22, pp. 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  15. Nakai, K. and Kanehisa, M., A Knowledge Base for Predicting Protein Localization Sites in Eukaryotic Cells, Genomics, 1992, vol. 14, pp. 897–911.

    Article  PubMed  CAS  Google Scholar 

  16. Bannai, H., Tamada, Y., Maruyama, O., Nakai, K., and Miyano, S., Extensive Feature Detection of N-Terminal Protein Sorting Signals, Nucleic Acids Res., 2002, vol. 18, pp. 298–305.

    CAS  Google Scholar 

  17. Emanuelsson, O., Nielsen, H., Brunak, S., and von Heijne, G., Predicting Subcellular Localization of Proteins Based on Their N-Terminal Amino Acid Sequence, Nucleic Acids Res., 2000, vol. 300, pp. 1005–1016.

    CAS  Google Scholar 

  18. Bendtsen, J.D., Nielsen, H., von Heijne, G., and Brunak, S., Improved Prediction of Signal Peptides: SignalP 3.0, Nucleic Acids Res., 2004, vol. 340, pp. 783–795.

    Google Scholar 

  19. Emanuelsson, O., Nielsen, H., and von Heijne, G., ChloroP, a Neural Network-Based Method for Predicting Chloroplast Transit Peptides and Their Cleavage Sites, Protein Sci., 1999, vol. 8, pp. 978–984.

    Article  PubMed  CAS  Google Scholar 

  20. Claros, M.G. and Vincens, P., Computational Method to Predict Mitochondrially Imported Proteins and Their Targeting Sequences, Eur. J. Biochem., 1996, vol. 241, pp. 779–786.

    Article  PubMed  CAS  Google Scholar 

  21. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L.L., Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes, Nucleic Acids Res., 2001, vol. 305, pp. 567–580.

    CAS  Google Scholar 

  22. Combet, C., Blanchet, C., Geourjon, C., and Deleage, G., NPS: Network Protein Sequence Analysis, Trends Biol. Sci., 2000, vol. 25, pp. 147–150.

    Article  CAS  Google Scholar 

  23. Blom, N., Gammeltoft, S., and Brunak, S., Sequence and Structure-Based Prediction of Eukaryotic Protein Phosphorylation Sites, J. Mol. Biol., 1999, vol. 294, pp. 1351–1362.

    Article  PubMed  CAS  Google Scholar 

  24. Letunic, I., Copley, R.R., Schmidt, S., Ciccarelli, F.D., Doerks, T., Schultz, J., Ponting, C.P., and Bork, P., SMART 4.0: Towards Genomic Data Integration, Nucleic Acids Res., 2004, vol. 32, pp. D142–D144.

    Article  PubMed  CAS  Google Scholar 

  25. Schultz, J., Milpetz, F., Bork, P., and Ponting, C.P., SMART, a Simple Modular Architecture Research Tool: Identification of Signaling Domains, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 5857–5864.

    Article  PubMed  CAS  Google Scholar 

  26. Marchler-Bauer, A. and Bryant, S.H., CD-Search: Protein Domain Annotations on the Fly, Nucleic Acids Res., 2004, vol. 32, pp. W327–W331.

    PubMed  CAS  Google Scholar 

  27. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  28. Durner, J., Shah, J., and Kessig, D.F., Salicylic Acid and Disease Resistance in Plants, Trends Plant Sci., 1997, vol. 2, pp. 266–274.

    Article  Google Scholar 

  29. Dong, X., SA, JA, Ethylene, and Disease in Plants, Curr. Opin. Plant Biol., 1998, vol. 1, pp. 316–323.

    Article  PubMed  CAS  Google Scholar 

  30. Kikuchi, S., Satoh, K., Nagata, T., Kawagashira, N., Doi, K., Kishimoto, N., Yazaki, J., Ishikawa, M., Yamada, H., Ooka, H., Hotta, I., Kojima, K., Namiki, T., Ohneda, E., Yahagi, W., Suzuki, K., Li, C.J., Ohtsuki, K., Shishiki, T., Otomo, Y., Murakami, K., Iida, Y., Sugano, S., Fujimura, T., Suzuki, Y., Tsunoda, Y., Kurosaki, T., Kodama, T., Masuda, H., Kobayashi, M., Xie, Q.H., Lu, M., Narikawa, R., Sugiyama, A., Mizuno, K., Yokomizo, S., Niikura, J., Ikeda, R., Ishibiki, J., Kawamata, M., Yoshimura, A., Miura, J., Kusumegi, T., Oka, M., Ryu, R., Ueda, M., Matsubara, K., Kawai, J., Carninci, P., Adachi, J., Aizawa, K., Arakawa, T., Fukuda, S., Hara, A., Hashizume, W., Hayatsu, N., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Kondo, S., Konno, H., Miyazaki, A., Osato, N., Ota, Y., Saito, R., Sasaki, D., Sato, K., Shibata, K., Shinagawa, A., Shiraki, T., Yoshino, M., Hayashizaki, Y., and Yasunishi, A., Collection, Mapping, and Annotation of over 28,000 cDNA Clones from Japonica Rice, Science, 2003, vol. 301, pp. 376–379.

    Article  PubMed  Google Scholar 

  31. Agarraberes, F.A. and Dice, J.F., Protein Translocation across Membranes, Biochim. Biophys. Acta-Biomembranes, 2001, vol. 1513, pp. 1–24.

    Article  CAS  Google Scholar 

  32. Dong, T. and Cutting, S., Sporulation Factor SpoIVFB, Handbook of Proteolytic Enzymes, Barrett, A., Rawlings, N., and Woessner, J., Eds., London: Elsevier, 2004, pp. 989–991.

    Google Scholar 

  33. Yu, Y.T.N. and Kroos, L., Evidence that SpoIVFB Is a Novel Type of Membrane Metalloprotease Governing Intercompartmental Communication during Bacillus subtilis Sporulation, J. Bacteriol., 2000, vol. 182, pp. 3305–3309.

    Article  PubMed  CAS  Google Scholar 

  34. Becker, A.B. and Roth, R.A., Identification of Glutamate-169 as the 3rd Zinc-Binding Residue in Proteinase-111, a Member of the Family of Insulin-Degrading Enzymes, Biochem. J., 1993, vol. 292, pp. 137–142.

    PubMed  CAS  Google Scholar 

  35. Perlman, R.K., Gehm, B.D., Kuo, W.L., and Rosner, M.R., Functional Analysis of Conserved Residues in the Active Site of Insulin-Degrading Enzyme, J. Biol. Chem., 1993, vol. 268, pp. 21538–21544.

    PubMed  CAS  Google Scholar 

  36. Perlman, R.K. and Rosner, M.R., Identification of Zinc Ligands of the Insulin-Degrading Enzyme, J. Biol. Chem., 1994, vol. 269, pp. 33140–33145.

    PubMed  CAS  Google Scholar 

  37. Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E. III, Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M.A., Rajandream, M.-A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J.E., Taylor, K., Whitehead, S., and Barrell, B.G., Deciphering the Biology of Mycobacterium tuberculosis from the Complete Genome Sequence, Nature, 1998, vol. 393, pp. 537–544.

    Article  PubMed  CAS  Google Scholar 

  38. Strosberg, A.D., Structure-Function Relationship of Proteins Belonging to the Family of Receptors Coupled to GTP-Binding Proteins, Eur. J. Biochem., 1991, vol. 196, pp. 1–10.

    Article  PubMed  CAS  Google Scholar 

  39. Horn, F., Bettler, E., Oliveira, L., Campagne, F., Cohen, F.E., and Vriend, G., GPCRDB Information System for G Protein-Coupled Receptors, Nucleic Acids Res., 2003, vol. 31, pp. 294–297.

    Article  PubMed  CAS  Google Scholar 

  40. Chung, D.A., Wade, S.M., Fowler, C.B., Woods, D.D., Abada, P.B., Mosberg, H.L., and Neubig, R.R., Mutagenesis and Peptide Analysis of the DRY Motif in the Alpha 2A Adrenergic Receptor: Evidence for Alternate Mechanisms in G Protein-Coupled Receptors, Biochem. Biophys. Res. Commun., 2002, vol. 293, pp. 1233–1241.

    Article  PubMed  CAS  Google Scholar 

  41. Alewijnse, A.E., Timmerman, H., Jacobs, E.H., Smit, M.J., Roovers, E., Cotecchia, S., and Leurs, R., The Effect of Mutations in the DRY Motif on the Constitutive Activity and Structural Instability of the Histamine H-2 Receptor, Mol. Pharmacol., 2000, vol. 57, pp. 890–898.

    PubMed  CAS  Google Scholar 

  42. Mhaouty-Kodja, S., Barak, L.S., Scheer, A., Abuin, L., Diviani, D., Caron, M.G., and Cotecchia, S., Constitutively Active alpha-1b Adrenergic Receptor Mutants Display Different Phosphorylation and Internalization Features, Mol. Pharmacol., 1999, vol. 55, pp. 339–347.

    PubMed  CAS  Google Scholar 

  43. Devoto, A., Piffanelli, P., Nilsson, I., Wallin, E., Panstruga, R., von Heijne, G., and Schulze-Lefert, P., Topology, Subcellular Localization, and Sequence Diversity of the Mlo Family in Plants, J. Biol. Chem., 1999, vol. 274, pp. 34993–35004.

    Article  PubMed  CAS  Google Scholar 

  44. Plakidou-Dymock, S., Dymock, D., and Hooley, R., A Higher Plant Seven-Transmembrane Receptor That Influences Sensitivity to Cytokinins, Curr. Biol., 1998, vol. 8, pp. 315–324.

    Article  PubMed  CAS  Google Scholar 

  45. Josefsson, L.G. and Rask, L., Cloning of a Putative G-Protein-Coupled Receptor from Arabidopsis thaliana, Eur. J. Biochem., 1997, vol. 249, pp. 415–420.

    Article  PubMed  CAS  Google Scholar 

  46. Colucci, G., Apone, F., Alyeshmerni, N., Chalmers, D., and Chrispeels, M.J., GCR1, the Putative Arabidopsis G Protein-Coupled Receptor Gene Is Cell Cycle-Regulated, and Its Overexpression Abolishes Seed Dormancy and Shortens Time to Flowering, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 4736–4741.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 1, pp. 73–84.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Liu, X., Guo, S. et al. Cloning and analysis of a novel conserved membrane zinc-metalloprotease family from Solanum surattense . Russ J Plant Physiol 54, 63–73 (2007). https://doi.org/10.1134/S1021443707010104

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443707010104

Key words

Navigation