Skip to main content
Log in

Low-frequency rheology of magnetically controlled elastomers with isotropic structure

  • Rheology
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The method of torsion oscillations is used to measure the dynamic modulus of elasticity of magnetically controlled elastomers that comprise silicone rubber and carbonyl iron in the low-frequency (up to 100 Hz) range. The samples are synthesized in the absence of a magnetic field; therefore, they have an isotropic structure. In the measurements, a constant magnetic field (up to 24 kA/m) is superimposed along the axis of forced torsion oscillations of the sample. A simple model of the rheological behavior of magnetically controlled elastomers is proposed; the problem of torsion oscillations of a cylindrical sample is solved. From the comparison with the experiment for the materials under study, we determine the coefficients of the theoretical model and the corrections to them, which are made because of variations in the rheology of magnetically controlled elastomers under the influence of a magnetic field. The derived relations make it possible to exclude artifacts and to adequately describe dependences of the storage and loss moduli on the frequency of mechanical loading and the strength of the applied magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. R. Jolly, J. D. Carlson, and B. C. Munoz, Smart Mater. Struct. 5, 607 (1996).

    Article  CAS  Google Scholar 

  2. M. R. Jolly, J. D. Carlson, and B. C. Munoz, J. Intell. Mater. Syst. Struct. 7, 613 (1996).

    Article  CAS  Google Scholar 

  3. W. M. Stewart, J. M. Ginder, L. D. Elie, and M. E. Nichols, US Patent No. 5,816,587 (1998).

  4. E. F. Levina, RF Patent No. 2157013 (2000).

  5. L. V. Nikitin, L. S. Mironova, A. N. Samus’, and G. V. Stepanov, Polymer Science, Ser. A 43, 443 (2001) [Vysokomol. Soedin., Ser. A 43, 698 (2001)].

    Google Scholar 

  6. L. V. Nikitin, L. S. Mironova, K. G. Kornev, and G. V. Stepanov, Polymer Science, Ser. A 46, 301 (2004) [Vysokomol. Soedin., Ser. A 46, 498 (2004)].

    Google Scholar 

  7. L. V. Nikitin, G. V. Stepanov, L. S. Mironova, and A. I. Gorbunov, J. Magn. Magn. Mater. 2072–2073, 272 (2004).

    Google Scholar 

  8. S. S. Abramchuk, D. S. Grishin, E. Yu. Kramarenko, et al., Polymer Science, Ser. A 48, 138 (2006) [Vysokomol. Soedin., Ser. A 48, 245 (2006)].

    Article  Google Scholar 

  9. G. V. Stepanov, S. S. Abramchuk, D. A. Grishin, et al., Polymer 48, 488 (2007).

    Article  CAS  Google Scholar 

  10. S. Abramchuk, E. Kramarenko, G. Stepanov, et al., Polym. Adv. Technol. 18, 883 (2007).

    Article  CAS  Google Scholar 

  11. S. Abramchuk, E. Kramarenko, D. Grishin, et al., Polym. Adv. Technol. 18, 513 (2007).

    Article  CAS  Google Scholar 

  12. G. V. Stepanov, D. Yu. Borin, Yu. L. Raikher, et al., J. Phys.: Condens. Matter 20, Art. No. 204121-5 (2008).

  13. Yu. L. Raikher and O. V. Stolbov, J. Phys.: Condens. Matter 20, Art. No. 204126-5 (2008).

  14. A. V. Chertovich, G. V. Stepanov, E. Yu. Kramarenko, and A. R. Khokhlov, Macromol. Mater. Eng. 295, 336 (2010).

    Article  CAS  Google Scholar 

  15. G. Filipcsei, I. Csetneki, A. Szilgyi, and M. Zrinyi, Adv. Polym. Sci. 206, 137 (2007).

    Article  CAS  Google Scholar 

  16. Y. Shen and M. F. Golnaraghi, J. Intell. Mater. Syst. Struct. 15, 27 (2004).

    Article  Google Scholar 

  17. C. Bellan and G. Bossis, Int. J. Mod. Phys. B 16, 2447 (2002).

    Article  CAS  Google Scholar 

  18. G. Bossis, C. Abbo, S. Cutillas, et al., Int. J. Mod. Phys. B 15, 564 (2001).

    Article  CAS  Google Scholar 

  19. G. Y. Zhou and Z. Jiang, Smart Mater. Struct. 13, 309 (2004).

    Article  Google Scholar 

  20. M. Zrinyi, J. Gacs, and C. Simon, WO Patent No. 9702580 (2006).

  21. J. D. Carlson and M. R. Jolly, Mechatronics 10, 555 (2000).

    Article  Google Scholar 

  22. J. Li, X. Gong, H. Zhu, and W. Jiang, Polym. Test. 28, 331 (2009).

    Article  CAS  Google Scholar 

  23. L. Chen, X. Gong, and W. Li, Chin. J. Chem. Phys. 21, 581 (2008).

    Article  CAS  Google Scholar 

  24. L. Chen, X. L. Gong, and W. H. Li, Polym. Test. 27, 340 (2008).

    Article  CAS  Google Scholar 

  25. T. L. Sun, X. L. Gong, W. Q. Jiang, et al., Polym. Test. 27, 520 (2008).

    Article  CAS  Google Scholar 

  26. M. Kallio, T. Lindroos, S. Aalto, et al., Smart Mater. Struct. 16, 506 (2007).

    Article  CAS  Google Scholar 

  27. X. L. Gong, X. Z. Zhang, and P. Q. Zhang, Polym. Test. 24, 669 (2005).

    Article  CAS  Google Scholar 

  28. Y. Wang, Y. Hu, L. Chen, et al., Polym. Test. 25, 262 (2006).

    Article  Google Scholar 

  29. DE Patent No. DD 297 178 (1992).

  30. G. V. Stepanov, E. I. Alekseeva, A. I. Gorbunov, and L. V. Nikitin, Organosilicon Chemistry VI-From Molecules to Materials, Ed. by N. Auner and J. Weis (Wiley-VCH, Weinheim, 2005), Vol. 2, p. 779.

    Google Scholar 

  31. A. Ya. Malkin and A. I. Isaev, Rheology: Concepts, Methods, and Applications (Professiya, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  32. M. Reiner, in Rheology. Theory and Applications, Ed. by F. R. Eirich (Academic, New York, 1956; Inostrannaya Literatura, Moscow, 1962).

    Google Scholar 

  33. S. V. Kankanala and N. Triantafyllidis, J. Mech. Phys. Solids 52, 2869 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Stolbov.

Additional information

Original Russian Text © O.V. Stolbov, Yu.L. Raikher, G.V. Stepanov, A.V. Chertovich, E.Yu. Kramarenko, A.R. Khokhlov, 2010, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2010, Vol. 52, No. 12, pp. 2158–2169.

This work was supported by the Russian Academy of Sciences (project 09-P-1-1010), under state contract 02.740.11.0442, by the Federal Education Agency (Rosobrazovanie) via the analytical departmental target program Development of the Scientific Potential of the Higher School (2.1.1/4463), and by the federal target program Research and Scientific-Pedagogical Personnel of Innovative Russia (State contract P2290).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolbov, O.V., Raikher, Y.L., Stepanov, G.V. et al. Low-frequency rheology of magnetically controlled elastomers with isotropic structure. Polym. Sci. Ser. A 52, 1344–1354 (2010). https://doi.org/10.1134/S0965545X10120138

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X10120138

Keywords

Navigation