Skip to main content
Log in

The effect of H2S on the selectivity of light alkenes in the FE-Mn-catalyzed Fischer-Tropsch synthesis

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Iron-manganese oxides are prepared using a co-precipitation procedure and studied for the conversion of synthesis gas to light olefins. In particular, the effect of a range of preparation variables is investigated in details. In this investigation, sulfur absorption and effect of sulfur poisoning on Fe-Mn catalysts have been studied. In the Fischer-Tropsch synthesis process, the poisoning of the catalyst is one of the important parameters causing a decrease in the catalyst activity, declaring the sulfur compounds as virulent poisons in this process. In the present investigation, poisoning of Fe-Mn catalysts were performed in a gas circulation system and H2S was injected into a circulation loop. The prepared catalysts were exposed to a mixture of H2S and N2 at about 450°C in the stainless-steel micro reactor via co-precipitation method. H2S was produced by addition of H2SO4 to Na2S × H2O and this gas was mixed with an inert carrier gas (N2). Comparing the activity and selectivity of fresh and poisoned catalysts, indicates that the selectivity and CO conversion are affected by high-level sulfur adsorbed on the catalysts. The results show that the CO conversion and selectivity with respect to methane production and coke formation were decreased, but the selectivity of light alkenes such as propylene was increased over poisoned catalysts. Characterization of both precursors and calcined catalysts by powder X-ray diffraction, BET specific surface area and thermal analysis methods such as TGA and DSC showed that the poisoning of Fe-Mn catalysts influenced the catalyst structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Chernavskii, Kinet. Catal. 46(5), 634 (2005).

    Article  CAS  Google Scholar 

  2. A. Sarkar, G. Jacobs, Y. Ji, et al., Catal. Lett. 121(1), 1 (2007).

    Article  Google Scholar 

  3. L. A. Vytnova, E.I. Bogolepova, A. N. Shuikin, et al., Pet. Chem. 46(2), 103 (2006).

    Article  Google Scholar 

  4. B. H. Davis, Top. Catal. 32(3), 143 (2005).

    Article  CAS  Google Scholar 

  5. L. A. Vytnova, E. I. Bogolepova, A. N. Shuikin, et al., Pet. Chem. 46(5), 324 (2006).

    Article  Google Scholar 

  6. M. N. Yakubovich, Pet. Chem. 48(1), 32 (2008).

    Google Scholar 

  7. A. Y. Krylova and E. A. Kozyukov, Solid Fuel Chem. 41(6), 335 (2007).

    Article  Google Scholar 

  8. W. Linghu, X. Liu, X. Li, and K. Fujimoto, Catal. Lett. 108(1), 11 (2006).

    Article  CAS  Google Scholar 

  9. M. N. Yakubovich and V. L. Struzhko, Pet. Chem. 46(4), 257 (2006).

    Article  Google Scholar 

  10. E. G. Derouane, V. Parmon, F. Lemos, and F. R. Ribeiro, Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and Opportunities in NATO Science Series II: Mathematics, Physics and Chemistry, 191 (2005).

  11. C. H. Zhang, Y. Yang, B. T. Teng, et al., J. Catal. 237(2), 405 (2006).

    Article  CAS  Google Scholar 

  12. J. Yang, Y. Sun, Y. Tang, et al., J. Mol. Catal., A: Chem. 245(1–2), 26 (2006).

    Article  CAS  Google Scholar 

  13. A. Martinez and C. Lopez, Appl. Catal., A 294(2), 251 (2005).

    Article  CAS  Google Scholar 

  14. C. Zhang, B. Teng, Y. Yang, et al. J. Mol. Catal., A: Chem. 239(1–2), 15 (2005).

    Article  CAS  Google Scholar 

  15. J. Li and N. J. Coville, Appl. Catal., A 181(1), 201 (1999).

    Article  CAS  Google Scholar 

  16. J. Li and N. J. Coville, Appl. Catal., A 208(1–2), 177 (2001).

    CAS  Google Scholar 

  17. L. Shi, J. Chen, K. Fang, and Y. Sun, Fuel 87(4–5), 521 (2008).

    Article  CAS  Google Scholar 

  18. B. Shi, G. Jacobs, D. Sparks and B. H. Davis, Fuel 84(9), 1093 (2005).

    Article  CAS  Google Scholar 

  19. T. Li, Y. Yang, C. Zhang, et al., Fuel 86(7–8), 921 (2007).

    Article  CAS  Google Scholar 

  20. A. Raje, J. R. Inga, and B. H. Davis, Fuel 76(3), 273 (1997).

    Article  CAS  Google Scholar 

  21. B. T. Teng, J. Chang, J. Yang, et al., Fuel 84(7–8), 917 (2005).

    Article  CAS  Google Scholar 

  22. B. Wu, L. Bai, H. Xiang, et al., Fuel 83(2), 205 (2004).

    Article  CAS  Google Scholar 

  23. L. Bai, H. W. Xiang, Y. W. Li, et al., Fuel 81(11–12), 1577 (2002).

    Article  CAS  Google Scholar 

  24. J. He, Y. Yoneyama, B. Xu, et al., Langmuir 21(5), 1699 (2005).

    Article  CAS  Google Scholar 

  25. T. S. Zhao, J. Chang, Y. Yoneyama, and N. Tsubaki, Ind. Eng. Chem. Res. 44(4), 769 (2005).

    Article  CAS  Google Scholar 

  26. Y. Yoneyama, J. He, Y. Morii, et al., Catal. Today 104(1), 37 (2005).

    Article  CAS  Google Scholar 

  27. A. Zhang, M. Kaiho, H. Yasuda, et al., Energy 30(11–12), 2243 (2005).

    Article  CAS  Google Scholar 

  28. C. Costabile, G. Milano, and L. Cavallo, et al., Polymer 45(2), 467 (2004).

    Article  CAS  Google Scholar 

  29. C. H. Tsai and T. H. Hsieh, Ind. Eng. Chem. Res. 43(15), 4043 (2004).

    Article  CAS  Google Scholar 

  30. N. O. Ikenaga, H. Taniguchi, A. Watanabe, and T. Suzuki, Fuel 79(3–4), 273 (2000).

    Article  CAS  Google Scholar 

  31. A. Martino, J. P. Wilcoxon, and J. S. Kawola, Energy Fuels 8(6), 1289 (1994).

    Article  CAS  Google Scholar 

  32. M. Yamada, N. Koizumi, A. Miyazawa, and T. Furukawa, Catal. Lett. 78(1–4), 195 (2002).

    Article  CAS  Google Scholar 

  33. J. Beck and T. Hilbertt, Chemie 626(1), 72 (2000).

    CAS  Google Scholar 

  34. T. Kaneko, T. Koyama, K. Tazawa, et al., J. Jpn. Inst. Energy 77(1), 321 (1998).

    Google Scholar 

  35. S. Vijay, E. E. Wolf, J. T. Miller, and A. J. Kropf, Appl. Catal. 264(1), 125 (2004).

    Article  CAS  Google Scholar 

  36. J. W. N. Verdite, Spectroscopy in Catalysts, 2nd Ed., Wiley-VCH, 2000.

  37. S. J. Tauster, S. C. Fung, and R. L. Garten, J. Am. Chem. Soc. 100(1), 170 (1978).

    Article  CAS  Google Scholar 

  38. H. B. Zhang and G. L. Schrader, J. Catal. 95(1), 325 (1985).

    Article  CAS  Google Scholar 

  39. M. D. Shroff, D. S. Kalakkad, and K. E. Coulter, et al., J. Catal. 156(2), 185 (1995).

    Article  CAS  Google Scholar 

  40. Y. Yang, H. W. Xiang, Y. Y. Xu, et al., Appl. Catal., A 266(2), 181 (2004).

    Article  CAS  Google Scholar 

  41. A. A. Mirzaei, R. Habibpour, and E. Kashi, Appl. Catal., A 296(2), 222 (2005).

    Article  CAS  Google Scholar 

  42. A. A. Mirzaei, M. Faizi, and R. Habibpour, Appl. Catal., A 306, 98 (2006).

    Article  CAS  Google Scholar 

  43. A. A. Mirzaei, R. Habibpour, M. Faizi, and E. Kashi, Appl. Catal., A 301(2), 272 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hadadzadeh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadadzadeh, H., Mirzaei, A.A., Morshedi, M. et al. The effect of H2S on the selectivity of light alkenes in the FE-Mn-catalyzed Fischer-Tropsch synthesis. Pet. Chem. 50, 78–86 (2010). https://doi.org/10.1134/S0965544110010123

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544110010123

Keywords

Navigation