Skip to main content
Log in

Shifts in metabolism and its regulation under the effect of spaceflight factors

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The review discusses the results of studies on adaptive changes in metabolism and its neuroendocrine regulation in humans and animals exposed to spaceflight factors and ground-based simulation of gravitational unloading. The majority of investigations are related to the water–electrolyte and mineral metabolisms, as well as to the protein, lipid, and carbohydrate metabolisms. As a result, the investigations performed before, during and after spaceflights or in simulation experiments allowed researchers to evaluate the state of the sympathoadrenal, hypothalamo-pituitary-adrenal, and other systems responsible for the regulation of body metabolism and reflecting the expression level of responses to the body exposure to unfavorable factors of environment. The authors have generalized the obtained data on the interconnection and interference between the neuroendocrine and psychophysiological statuses in real and simulated spaceflight conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balakhovskii, I.S., Grigor’ev, A.I., Dlusskaya, I.G., et al., Metabolism and renal function in crewmembers of Soyuz-6 and Soyuz-7 spaceships, Kosm. Biol., 1971, no. 1, p. 37.

    Google Scholar 

  2. Bakharev, V.D., Klinicheskaya neirofiziologiya regulyatornykh peptidov (Clinical Neurophysiology of Regulatory Peptides), Sverdlovsk, 1989.

    Google Scholar 

  3. Vasil’eva, G.Yu., Interhormonal interaction and interconnection of the indicators for the human neurohumoral and psychophysiological status in the spaceflight condition simulation, Extended Abstract of Cand. Sci. (Med.) Dissertation, Moscow, 2007.

    Google Scholar 

  4. Vorob’ev, D.V. and Larina, I.M., Glucocorticoid receptors, Byul. Kosm. Biol. Aviakosm. Med., 1989. nos. 7–8, p. 3.

    Google Scholar 

  5. Vorob’ev, D.V. and Larina, I.M., Reception of glucocorticoid hormones in the physiological conditions and in extreme states, Kosm. Biol. Aviakosm. Med., 1990, vol. 24, no. 6, p. 4.

    PubMed  Google Scholar 

  6. Gazenko, O.G., Grigor’ev, A.I., and Natochin, Yu.V., Vodno-solevoi gomeostaz i kosmicheskii polet in Problemy kosmicheskoi biologii (Water Salt Homeostasis and Spaceflight in Problems of Space Biology), Moscow, 1986. vol. 54.

  7. Grigor’ev, A.I. and Egorov, A.D., Dlitel’nye kosmicheskie polety, in Kosmicheskaya biologiya i meditsina (Long-Duration Spaceflights in Space Biology and Medicine), vol. 3, book 2, Moscow, 1997.

  8. Grigor’ev, A.I. and Larina, I.M., Contents of somatotropin and other regulators of muscular metabolism in human blood under conditions of long-term space flights and hypokinesia, Hum. Physiol., 1999, vol. 25, no. 4, p. 451.

    Google Scholar 

  9. Grigor’ev, A.I., Larina, I.M., and Morukov, B.V., Specificities of calcium turnover in weightlessness, Ross. Fiziol. Zh. im. I.M. Sechenova, 1999, vol. 85, no. 6, p. 835.

    PubMed  Google Scholar 

  10. Grigor’ev, A.I., Larina, I.M., Noskov, V.B., et al., Vliyanie neprodolzhitel’nykh i dlitel’nykh kosmicheskikh poletov na nekotorye biokhimicheskie i fizikokhimicheskie parametry krovi kosmonavtov, Kosm. Biol. Aviakosm. Med., 1996. no. 1, pp. 4–10.

    Google Scholar 

  11. Grigor’ev, A.I., Ushakov, A.S., Popova, I.A., et al., Water salt balance and renal function, in Rezul’taty meditsinskikh issledovanii, vypolnennykh na orbital’nom nauchno-issledovatel’skom komplekse “Salyut-6”–“Soyuz” (Results of Medical Investigations Performed on the Salyut-6–Soyuz Orbital Research Complex), Moscow, 1986, p. 145.

    Google Scholar 

  12. Grigor’ev, I.V., Lapkovskii, V.V., Nichiporuk, I.A., and Vasil’eva, G.Yu., The spectrum of saliva protein as an indicator for the psychoemotional state of a group (source: the crew of investigators at the first stage on Mars-500), Tekhnol. Zhivykh Sist., 2011, vol. 8, no. 5, p. 59.

    Google Scholar 

  13. Davydova, N.A. and Tigranyan, R.A., State of sympathoadrenal system in cosmonauts after 7-day flights, Kosm. Biol. Aviakosm. Med., 1982, vol. 16, no. 2, p. 88.

    PubMed  CAS  Google Scholar 

  14. Delenyan, N.V. and Markin, A.A., State of the system for the peroxide lipid oxidation of rat tissues after the 7day spaceflight on the Kosmos-1667 biosatellite, Kosm. Biol., 1989, vol. 23, no. 4, p. 34.

    CAS  Google Scholar 

  15. Il’ina-Kakueva, E.I., Petrova, N.V., and Portugalov, V.V., Spaceflight effects on the skeletal musculature and the nervous apparatus of muscles, in Vliyanie faktorov komicheskogo poleta na organizm zhivotnykh (Spaceflight Effects on Animal Organisms), Moscow, 1979, p. 95.

    Google Scholar 

  16. Il’in, E.A. and Kaplanskii, A.S., A comparative analysis of changes developed in rats in weightlessness against suspending them in the antiorthostatic position, Aviakosm. Ekol. Med., 1998, vol. 32, no. 6, p. 43.

    Google Scholar 

  17. Kalita, N.F. and Tigranyan, R.A., The endocrine status of cosmonauts after the completion of long-duration space missions, Kosm. Biol. Aviakosm. Med., 1986, vol. 20, no. 4, p. 84.

    PubMed  CAS  Google Scholar 

  18. Kvetnyanski, R., Tigranyan, R.A., Torda, T., et al., Catecholamines and their turnover enzymes in the hypothalamus of rats after the flight on the Kosmos-782 biosatellite, Kosm. Biol. Aviakosm. Med., 1979, vol. 13, no. 3, p. 24.

    Google Scholar 

  19. Kvetnyanski, R., Tigranyan, R.A., Torda T., Catecholamines and their turnover enzymes in the myocardium of rats after the flight on the Kosmos-2936a biosatellite, Kosm. Biol. Aviakosm. Med., 1982, no. 3, p. 66.

    Google Scholar 

  20. Kvetnyanski, R., Tigranyan, R.A., and Chulman, Yu., Long-duration spaceflight effects on the catecholamine content in isolated nuclei of the rat brain, Kosm. Biol. Aviakosm. Med., 1983, vol. 17, no. 4, p. 84.

    Google Scholar 

  21. Kvetnyanski, R., Chulman, Yu., and Tigranyan, R.A., Catecholamine content in isolated nuclei of the rat hypothalamus after the flight on the Kosmos-P 29 biosatellite, Kosm. Biol. Aviakosm. Med., 1983, vol. 17, no. 1, p. 89.

    Google Scholar 

  22. Larina, I.M., Zakonomernosti adaptatsii gormonal’nykh sistem organizma cheloveka k usloviyam mikrogravitatsii (Regularities in the Adaptation of Human Hormonal Systems to the Microgravity Conditions): Extended abstract of cand. med. dissertation, Moscow, 2000.

    Google Scholar 

  23. Larina, I.M., Calcium Metabolism and its regulation in man during adaptation to microgravitation, Hum. Physiol., 2000, vol. 26, no. 5, p. 588.

    Article  CAS  Google Scholar 

  24. Larina, I.M., Hormonal regulation of the human metabolism in microgravity conditions and in simulating its physiological effects, Aviakosm. ekol. Med., 2003, vol. 37, no. 2, p. 32.

    CAS  Google Scholar 

  25. Larina, I.M., Gormonal’naya regulyatsiya, Orbital’naya stantsiya “Mir” (Hormonal Regulation, Mir Orbital Station, 2002.

    Google Scholar 

  26. Larina, I.M., Bystritskaya, A.F., and Smirnova, T.M., Psychophysiological monitoring under conditions of real and simulated microgravity, Hum. Physiol., 1999, vol. 25, no. 5, p. 574.

    PubMed  CAS  Google Scholar 

  27. Larina, I.M., Sukhanov, Yu.V., and Lakota, N.G., Mechanisms for early human response of water salt balance in different ground simulations of microgravity effects, Aviakosm. Ekol. Med., 1999, vol. 33, no. 4, p. 17.

    CAS  Google Scholar 

  28. Larina, I.M., Witson, P.A., and Smirnova, T.M., YuMing Chen, Circadian rhythms of salivary cortisol content during long-term space flight, Hum. Physiol., 2000, vol. 26, no. 4, p. 462.

    Article  CAS  Google Scholar 

  29. Mailyan, E.S. and Kovalenko, E.A., Spaceflight effect on the bioenergetics of skeletal muscles in rats, in Vliyanie dinamicheskikh faktorov kosmicheskogo poleta na organizm zhivotnykh (Effects of Dynamic Spaceflight Factors on Animal Organisms), Moscow, 1979, p. 109.

    Google Scholar 

  30. Makho, L., Nemeet, Sh., Shtrbak, V., and Tigranyan, R.A., The activity of some enzymes of the liver and the processes of lipogenesis in fatty tissue, in Vliyanie dinamicheskikh faktorov kosmicheskogo poleta na organizm zhivotnykh (Effects of Dynamic Spaceflight Factors on Animal Organisms), Moscow, 1979, p. 54.

    Google Scholar 

  31. Meerson, F.Z., Malyshev, I.Yu., and Zamotrinskii, A.V., The biphasic nature of the phenomenon of structural adaptation stabilization in the long-term adaptation of the body to stress, Byull. Eksp. Biol. Med., 1993, no. 10, p. 352.

    Google Scholar 

  32. Makho, L., Nemeet, Sh., Palkovich, M., et al., The activity of some enzymes in the liver and the processes of lipogenesis in fatty tissues of rats after the spaceflight, Biol. Aviakosm. Med., 1980, vol. 14, no. 3, p. 26.

    Google Scholar 

  33. Morukov, B.V., Larina, I.M., and Grigor’ev, A.I., Changes in calcium metabolism and its regulation in humans during a long-term space flight, Hum. Physiol., 1998, vol. 24, no. 2, p. 221.

    CAS  Google Scholar 

  34. Nesterov, V.P., Zheludkova, Z.P., and Kuznetsova, L.A., The activity of glycogen synthetase, glycogen phosphorylase, the glycogen content and electrolyte composition of skeletal muscles, in Vliyanie dinamicheskikh faktorov kosmicheskogo poleta na organizm zhivotnykh (Effects of Dynamic Spaceflight Factors on Animal Organisms), Moscow, 1979, p. 114.

    Google Scholar 

  35. Nichiporuk, I.A., Analysis of interconnection between character traits, indicators of neuroendocrine regulation and psychophysiological status in the conditions of “dry” immersion, Aviakosm. Ekol. Med., 2008, vol. 42, no. 5, p. 65.

    CAS  Google Scholar 

  36. Nichiporuk, I.A., Gormonal’nyi status i vodno-solevoi obmen pri modelirovanii bolezni dvizheniya (Hormonal Status and Water Salt Balance in the Motion Sickness Simulation), Extended Abstract of Cand. Sci. (med.) Dissertation, Moscow, 1986.

    Google Scholar 

  37. Nichiporuk, I.A., Psychophysiological and biochemical correlates of a predisposition to motion sickness, in Tez. dokl. IX Vses. konf. kosm. Biol. Aviakosm. Med. (Abstr. IX All-Union Conf. on Space Biology and Aerospace Medicine), Moscow, 1990, p. 144.

    Google Scholar 

  38. Nichiporuk, I.A., Ivanov, A.A., Pozdnyakov, S.V., and Vasil’eva, G.Yu., Neuroendocrine regulation and psychophysiological status in hypokinetic conditions, Gipokineziya: meditsinskie i psikhologicheskie problem (Hypokinesia: Medical and Psychological Problems) (Abstr. Conf.), Moscow, 1997, p. 57.

    Google Scholar 

  39. Nichiporuk, I.A. and Vasil’eva, G.Yu., Specificities of the neuroendocrine system and psychophysiological status in the conditions of antiorthostatic hypokinesia, in Medico-biological Aspects of Physical Factors Effect (Proc. Int. Conf.), Minsk, 2006, p. 250.

    Google Scholar 

  40. Nichiporuk, I.A., Vasil’eva, G.Yu., Noskov, V.B., and Morukov, B.V., Dynamics of the body composition and neurohumoral and psychophysiological status in humans in 105-day isolation conditions, Aviakosm. Ekol. Med., 2011, vol. 45, no. 2, p. 39.

    CAS  Google Scholar 

  41. Orlov, O.I., Countermeasures against disorders in the calcium turnover and its regulatory systems in prolonged hypokinesia in humans, Osteoporoz Osteopatii, 2007, no. 3, p. 23.

    Google Scholar 

  42. Parin, V.V., Kosmolinskii, F.P., and Dushkov, Yu.A., Kosmicheskaya biologiya i meditsina (Space Biology and Medicine), Moscow, 1975.

    Google Scholar 

  43. Popova, I.A. and Grigor’ev, A.I., Spaceflight effects on metabolism: Results of biochemical investigations in experiments on rats on Kosmos biosatellites, Aviakosm. Ekol. Med., 1992. vol. 26, no. 5-6, p. 4.

    CAS  Google Scholar 

  44. Popova, I.A., Afonin, B.V., Vetrova, E.G., et al., Homeostatic responses of rat blood in the experiment on the Kosmos-1667 biosatellite, Kosm. Biol. Aviakosm. Med., 1988. vol. 22, no. 5, pp. 39–42.

    PubMed  CAS  Google Scholar 

  45. Popova, I.A., Nosova, E.A., Vetrova, E.G., et al., Proteins and protein turnover products in the blood in the conditions of prolonged hypokinesia, Kosm. Biol. Aviakosm. Med., 1988, vol. 22, no. 6, p. 56.

    Google Scholar 

  46. Rokhlenko, K.D., Electron microscopic study of skeletal muscles in hypokinesia, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 1977.

    Google Scholar 

  47. Sel’e, G., Na urovne tselogo organizma (On the Whole Body Level), Moscow, 1972.

    Google Scholar 

  48. Starkova, N.T., Farmakoterapiya v endokrinologii (Pharmacotherapy in Endocrinology), Moscow, 1989.

    Google Scholar 

  49. Tigranyan, R.A., Belyakova, M.I., Kalita, N.F., et al., Changes in some biochemical blood factors, in Vliyanie dinamicheskikh faktorov kosmicheskogo poleta na organizm zhivotnykh (Effects of Dynamic Spaceflight Factors on Animal Organisms), Moscow, 1979, p. 41.

    Google Scholar 

  50. Tigranyan, R.A., Makho, L., Kvetnyanski, R., and Kalita, N.F., Concentrations of hormones in rat blood plasma after the flight on the Kosmos-936 biosatellite, Kosm. Biol. Aviakosm. Med., 1982, no. 6, p. 84.

    Google Scholar 

  51. Ushakov, A.S., Vlasova, Z.F., and Miroshnikova, V.B., Vliyanie dinamicheskikh faktorov kosmicheskogo poleta na organizm zhivotnykh (Effects of Dynamic Spaceflight Factors on Animal Organisms), Moscow, 1979.

    Google Scholar 

  52. Chaika, A.M. and Dzhenzhera, L.Yu., Dynamics of the blood volume, extracellular fluid and serum proteins in humans in the conditions of water immersion and hypokinesia, in Mater. 7-i Vses. konf. po kosm. biol. i med., (Proc. 7th All-Union Conf. Space Biol. Med.), Kaluga, 1986, p. 2.

    Google Scholar 

  53. Cheglova, I.A. and Larina, I.M., The role of skeletal unloading in the development of skeletal muscular atrophy and changes in the plasma growth hormone level, in Dokl. 18-go s”ezda Fiziol. o-va im. I.P. Pavlova (Rep.18th Congr. of the Pavlov Physiol. Society), Kazan, 2001, p. 592.

    Google Scholar 

  54. Cheglova, I.A., Larina, I.M., Shenkman, B.S., and Nemirovskaya, T.L., Dynamics of the morphological characteristics of m. vastus lateralis and hormonal regulation parameters in the course of the 3rd-and seventh day “dry” immersion, in Gipokineziya (Meditsinskie i psikhologicheskie problemy) (Hypokinesia: Medical and Psychological Problems) (Abstr. Conf.) Moscow, 1997, p. 86.

    Google Scholar 

  55. Shved, D.M., Gushchin, V.I., Vinokhodova, A.G., et al., The effects of autonomous conditions in the simulated initial phase of a flight to Mars on a human operator’s psychophysiological adaptation and communicative behavior, Aviakosm. Ekol. Med., 2011, vol. 45, no. 1, p. 34.

    CAS  Google Scholar 

  56. Abraham, S., Lin, C.Y., Klein, H.P., et al., Studies of specific hepatic enzymes involved in the conversion of carbohydrates to lipids in rats exposed to prolonged spaceflight aboard Kosmos-1129, Physiology, 1980. vol. 23, no. 6 (Suppl.), p. S55–S58.

    CAS  Google Scholar 

  57. Abraham, S., Lin, C.Y., Klein, H.P., et al., Studies of specific hepatic enzymes involved in the conversion of carbohydrates to lipids in rats exposed to prolonged spaceflight aboard Kosmos-1129, Adv. Physiol. Sci., vol. 19: Gravit. Physiol., Hideg, J.I., Gazenko, O., Eds., New York, 1981, p. 71.

    Google Scholar 

  58. Ahlers, I., The Effect of Space Flight Factors on Tissue Lipids in Rat, Bratislava, 1984.

    Google Scholar 

  59. Ahlers, I., Tigranyan, R.A., Ahlersova, E., et al., The effect of microgravity on lipids of rat plasma and tissues, in The Effect of Dynamic Space Flight Factors on the Animal Body, Moscow, 1979, p. 58.

    Google Scholar 

  60. Ahlers, I., Tigranyan, R.A., Djatlinka, L., et al., Plasma and tissue lipids of Kosmos-1129 rats, J. High Resolut. Chromatogr. Chromatogr. Commun., 1982, vol. 16, no. 2, p. 58.

    CAS  Google Scholar 

  61. Day, M.K., Allen, D.L., Mohajerani, L., et al., Adaptations of human skeletal muscles fibers to spaceflight, J. Gravit. Physiol., 1995, vol. 2, no. 1, p. 47.

    Google Scholar 

  62. Gerra, G., Avanzini, P., Zaimovic, A., et al., Neurotransmitters, neuroendocrine correlates of sensationseeking temperament in normal humans, Neurophsychobiology, 1999, vol. 39, no. 4, p. 207.

    Article  CAS  Google Scholar 

  63. Grigoriev, A.I., Ion-regulatory function of the human kidney in prolonged space flight, Acta Astronaut., 1981. vol. 8, no. 9–10, pp. 987–993.

    Article  PubMed  CAS  Google Scholar 

  64. Grigoriev, A.I., Egorov, A.D., and Nichiporuk, I.A., Neurohumoral mechanism of space motion sickness, J. High Resolut. Chromatogr. Chromatogr. Commun., 1988, vol. 17, no. 2, p. 167.

    CAS  Google Scholar 

  65. Grigoriev, A.I., Morukov, B.V., and Vorobyev, D.V., Water and electrolyte studies during long-term missions onboard the space station Saluyt and Mir, Clin. Invest., 1994, vol. 72, p. 169.

    Article  CAS  Google Scholar 

  66. Grigoriev, A.I., Nichiporuk, I.A., and Arzamazov, G.S., Role of changes in hormonal status in the development of motion sickness in man, Hum. Physiol., 1986, vol. 12, no. 1, p. 57.

    Google Scholar 

  67. Grigoriev, A.I., Nichiporuk, I.A., Yasnetsov, V.V., and Shashkov, V.S., Hormonal status and fluid electrolyte metabolism in motion sickness, Aviat. Space Environ. Med., 1988, vol. 59, no. 4, p. 301.

    PubMed  CAS  Google Scholar 

  68. Huntoon, C.L., Cintron, N.M., and Whitson, P.A., Endocrine and biochemical functions, in Space Physiology and Medicine, Nicogossian, A.E., Huntoon, C.L., and Pool, S.L., Eds., Phyladelphia, 1994, p. 334.

    Google Scholar 

  69. Kvetnansky, R., Davydova, N.A., Noskov, V.B., et al., Plasma and urine catecholamine levels in cosmonauts during long-term stay on space station Salyut-7, Acta Astronaut., 1988, no. 17, p. 181.

    Article  PubMed  CAS  Google Scholar 

  70. Lane, H.W., Morukov, B.V., Larina, I.M., et al., Plasma volume, extracellular fluid volume, and regulatory hormones during long-term space flight, Abstracts of 12th Man in Space Symposium, June 8–13, Washington D.C., 1997, p. 12.

    Google Scholar 

  71. Lavin, N., Manual of Endocrinology and Metabolism, London, 1994.

    Google Scholar 

  72. Leach, C.S. and Rambaut, P.C., Biochemical Responses of the Skylab crewmen: an Overview: Biomedical Results from Skylab, Johnston, R.S. Fietlein, L.F., Eds. NASA, Washington, DC, 1977.

  73. Macho, L., Kvetnansky, R., Vigas, M., et al., Effect of space flights on plasma hormone levels in man and in experimental animal, Acta Astronaut., 1991, vol. 23, p. 117.

    Article  PubMed  CAS  Google Scholar 

  74. Montoya, E.R., Terburg, D., Bos, P.A., and van Honk, J., Testosterone, cortisol, and serotonin as key regulators of social aggression: a review and theoretical perspective, Motiv. Emot., 2012, vol. 36, no. 1, p. 65.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Morukov, B.V., Smith, S.M., Oganov, V.S., et al., Calcium metabolism during extended-duration space flight, Abstract of 19th Annual Int. Gravitational Physiology Meeting, Rome, 1998, p. 54.

    Google Scholar 

  76. Nichiporuk, I.A., Grishanin, D.V., and Grigoriev, A.I., The biochemical and physiological variables in motion sickness followed modified neuroendocrine activity, Proc. of 4th Eur. Symp. Life Sci. Res. Space, Paris: ESA, 1990, p. 4.

    Google Scholar 

  77. Nichiporuk, I.A., Rapotkov, A.N., Orlov, O.I., and Grigoriev, A.I., Neurohumoral reactions to long-term vestibular stimulation in man, Physiology, 1993. vol. 36, no. 1 (suppl.), p. S5.

    CAS  Google Scholar 

  78. Strewe, C., Feuerecker, M., Nichiporuk, I., et al., Effects of parabolic flight and spaceflight on the endocannabinoid system in humans, Rev. Neurosci., 2012. vol. 23, nos. 5–6, p. 673.

    PubMed  CAS  Google Scholar 

  79. Swaab, D.F., Bao, A.M., and Lucassen, P.J., The stress system in the human brain in depression and neurodegeneration, Ageing Res. Rev., 2005, vol. 4, no. 2, p. 141.

    Article  PubMed  CAS  Google Scholar 

  80. Varenik, E.N., Lipina, T.V., Pogodina, L.S., et al., Reaction of rat cardiomyocytes to combined influence of simulated weightlessness and 2G-gravity, in Biological Motility: From Fundamental Achievements to Nanotechnologies, Pushchino, 2010, p. 307.

    Google Scholar 

  81. Vassillieva, G.Yu., Nichiporuk, I.A., Ivanov, A.A., and Pozdnyakov, S.V., Psychophysiological and neuroendocrine interrelations in conditions of antiorthostatic hypokinesia, J. Gravit. Physiol., 1998, vol. 5, no. 1, p. 105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Larina.

Additional information

Original Russian Text © I.M. Larina, I.A. Nichiporuk, O.M. Veselova, G.Yu. Vasilieva, I.A. Popova, 2013, published in Aviakosmicheskaya i Ekologicheskaya Meditsina, 2013, Vol. 47, No. 1, pp. 21–30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larina, I.M., Nichiporuk, I.A., Veselova, O.M. et al. Shifts in metabolism and its regulation under the effect of spaceflight factors. Hum Physiol 41, 689–698 (2015). https://doi.org/10.1134/S0362119715070105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119715070105

Keywords

Navigation