Skip to main content
Log in

Strong converse for the classical capacity of the pure-loss bosonic channel

  • Information Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

This paper strengthens the interpretation and understanding of the classical capacity of the pure-loss bosonic channel, first established in [1]. In particular, we first prove that there exists a trade-off between communication rate and error probability if one imposes only a mean photon number constraint on the channel inputs. That is, if we demand that the mean number of photons at the channel input cannot be any larger than some positive number NS, then it is possible to respect this constraint with a code that operates at a rate g(ηNS/(1-p)) where p is the code error probability, η is the channel transmissivity, and g(x) is the entropy of a bosonic thermal state with mean photon number x. Then we prove that a strong converse theorem holds for the classical capacity of this channel (that such a rate-error trade-off cannot occur) if one instead demands for a maximum photon number constraint, in such a way that mostly all of the “shadow” of the average density operator for a given code is required to be on a subspace with photon number no larger than nNS, so that the shadow outside this subspace vanishes as the number n of channel uses becomes large. Finally, we prove that a small modification of the well-known coherent-state coding scheme meets this more demanding constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giovannetti, V., Guha, S., Lloyd, S., Maccone, L., Shapiro, J.H., and Yuen, H.P., Classical Capacity of the Lossy Bosonic Channel: The Exact Solution, Phys. Rev. Lett., 2004, vol. 92, no. 2, pp. 027902 (4).

    Article  Google Scholar 

  2. Shapiro, J.H., The Quantum Theory of Optical Communications, IEEE J. Sel. Top. Quant. Electron., 2009, vol. 15, no. 6, pp. 1547–1569.

    Article  Google Scholar 

  3. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., and Lloyd, S., G Gaussian Quantum Information, Rev. Modern Phys., 2012, vol. 84, no. 2, pp. 621–669

    Article  Google Scholar 

  4. Holevo, A.S. and Werner, R.F., Evaluating Capacities of Bosonic Gaussian Channels, Phys. Rev. A, 2001, vol. 63, no. 3, pp. 032312 (14).

    Article  Google Scholar 

  5. Yuen, H.P. and Ozawa, M., Ultimate Information Carrying Limit of Quantum Systems, Phys. Rev. Lett., 1993, vol. 70, no. 4, pp. 363–366.

    Article  MATH  MathSciNet  Google Scholar 

  6. Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M., and Wootters, W.K., Classical Information Capacity of a Quantum Channel, Phys. Rev. A, 1996, vol. 54, no. 3, pp. 1869–1876.

    Article  MathSciNet  Google Scholar 

  7. Schumacher, B. and Westmoreland, M.D., Sending Classical Information via Noisy Quantum Channels, Phys. Rev. A, 1997, vol. 56, no. 1, pp. 131–138.

    Article  Google Scholar 

  8. Holevo, A.S., The Capacity of the Quantum Channel with General Signal States, IEEE Trans. Inform. Theory, 1998, vol. 44, no. 1, pp. 269–273.

    Article  MATH  MathSciNet  Google Scholar 

  9. Wilde, M.M., Guha, S., Tan, S.-H., and Lloyd, S., Explicit Capacity-Achieving Receivers for Optical Communication and Quantum Reading, Proc. 2012 IEEE Int. Sympos. on Information Theory (ISIT’2012), Cambridge, MA, USA, July 1–6, 2012, pp. 551–555.

  10. Koenig, R., Wehner, S., and Wullschleger, J., Unconditional Security from Noisy Quantum Storage, IEEE Trans. Inform. Theory, 2012, vol. 58, no. 3, pp. 1962–1984.

    Article  MathSciNet  Google Scholar 

  11. Winter, A., Coding Theorem and Strong Converse for Quantum Channels, IEEE Trans. Inform. Theory, 1999, vol. 45, no. 7, pp. 2481–2485.

    Article  MATH  MathSciNet  Google Scholar 

  12. Ogawa, T. and Nagaoka, H., Strong Converse to the Quantum Channel Coding Theorem, IEEE Trans. Inform. Theory, 1999, vol. 45, no. 7, pp. 2486–2489.

    Article  MATH  MathSciNet  Google Scholar 

  13. Winter, A., Coding Theorems of Quantum Information Theory, PhD Thesis, Univ. Bielefeld, Germany, 1999. Available at arXiv:quant-ph/9907077.

    Google Scholar 

  14. Koenig, R. and Wehner, S., A Strong Converse for Classical Channel Coding Using Entangled Inputs, Phys. Rev. Lett., 2009, vol. 103, no. 7, pp. 070504 (4).

    Google Scholar 

  15. Wilde, M.M., Winter, A., and Yang, D., Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels, arXiv:1306.1586v3 [quant-ph], 2013.

    Google Scholar 

  16. Polyanskiy, Y., Channel Coding: Non-Asymptotic Fundamental Limits, PhD Thesis, Princeton Univ., USA, 2010.

    Google Scholar 

  17. Winter, A., Compression of Sources of Probability Distributions and Density Operators, arXiv: quant-ph/0208131v1, 2002.

    Google Scholar 

  18. Bennett, C.H., Devetak, I., Harrow, A.W., Shor, P.W., and Winter, A., Quantum Reverse Shannon Theorem, arXiv:0912.5537 [quant-ph], 2009.

    Google Scholar 

  19. Berta, M., Brandão, F., Christandl, M., and Wehner, S., Entanglement Cost of Quantum Channels, Proc. 2012 IEEE Int. Sympos. on Information Theory (ISIT’2012), Cambridge, MA, USA, July 1–6, 2012, pp. 900–904.

  20. Berta, M., Brandão, F., Christandl, M., and Wehner, S., Entanglement Cost of Quantum Channels, IEEE Trans. Inform. Theory, 2013, vol. 59, no. 10, pp. 6779–6795.

    Article  MathSciNet  Google Scholar 

  21. Nayak, A., Optimal Lower Bounds for Quantum Automata and Random Access Codes, Proc. 40th Ann. Sympos. on Foundations of Computer Science, New York City, NY, USA, Oct. 17–19, 1999, pp. 369–376. Available at arXiv:quant-ph/9904093.

  22. Devetak, I., Harrow, A.W., and Winter, A., A Resource Framework for Quantum Shannon Theory, IEEE Trans. Inform. Theory, 2008, vol. 54, no. 10, pp. 4587–4618.

    Article  MathSciNet  Google Scholar 

  23. Cover, T.M. and Thomas, J.A., Elements of Information Theory, New York: Wiley, 2006, 2nd ed.

    MATH  Google Scholar 

  24. Ogawa, T. and Nagaoka, H., Making Good Codes for Classical-Quantum Channel Coding via Quantum Hypothesis Testing, IEEE Trans. Inform. Theory, 2007, vol. 53, no. 6, pp. 2261–2266.

    Article  MathSciNet  Google Scholar 

  25. Hoeffding, W., Probability Inequalities for Sums of Bounded Random Variables, J. Amer. Statist. Assoc., 1963, vol. 58, no. 301, pp. 13–30.

    Article  MATH  MathSciNet  Google Scholar 

  26. Tao, T., Topics in Random Matrix Theory, Providence, R.I.: Amer. Math. Soc., 2012. See also http://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Wilde.

Additional information

Original Russian Text © M.M. Wilde, A. Winter, 2014, published in Problemy Peredachi Informatsii, 2014, Vol. 50, No. 2, pp. 3–19.

Supported by the European Commission, STREP “QCS,” the European Research Council, Advanced Grant “IRQUAT,” the Philip Leverhulme Trust, and the Spanish MINECO, project no. FIS2008-01236, with the support of FEDER funds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilde, M.M., Winter, A. Strong converse for the classical capacity of the pure-loss bosonic channel. Probl Inf Transm 50, 117–132 (2014). https://doi.org/10.1134/S003294601402001X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003294601402001X

Keywords

Navigation