Skip to main content
Log in

Analysis of local regions near interfaces in nanostructured multicomponent (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapor-deposition from an arc of an evaporating cathode

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Multicomponent nanostructured (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapor-deposition method have been studied using several complementary methods of elemental and structural analysis, such as those based on the use of slow positron beam (SPB); proton microbeam (μ-PIXE); electron micro- and nanobeam (EDS and SEM analysis); and X-ray diffraction phase analysis (XRD), including the a-sin2ϕ method of measuring the stress-strain state (X-ray tensometry). The elemental composition, microstructure, residual stresses in nanograins, and in-depth and surface distributions of defects and atoms, as well as the phase composition, stress-strain state, and texture of the coatings have been studied in a 3D representation. It has been found that creating a state of elastic stress-strain compression in the coating can significantly enhance its resistance to oxidation upon annealing. A redistribution of elements and defects (their aligning and segregation) due to diffusion and termination of spinodal segregation has been revealed near interfaces, around grains and subgrains, which occurred without a significant change in the average size of nanograins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Pogrebnyak, A. P. Shpak, N. A. Azarenkov, and V. M. Beresnev, “Structures and properties of hard and superhard nanocomposite coatings,” Phys. Usp. 52, 29–54 (2009).

    Article  Google Scholar 

  2. A. D. Pogrebnyak, A. G. Ponomarev, A. P. Shpak, and Yu. A. Kunitskii, “Application of micro- and nano- probes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects,” Phys. Usp. 55, 270–300 (2012).

    Article  Google Scholar 

  3. A. D. Pogrebnyak, V. M. Beresnev, A. A. Dem’yanenko, V. S. Baidak, F. F. Komarov, M. V. Kaverin, N. Makhmudov, and D. A. Kolesnikov, “Adhesive strength, superhardness, and the phase and elemental compositions of nanostructured coatings based on Ti-Hf-Si-N,” Phys. Solid State 54, 1882–1890 (2012).

    Article  Google Scholar 

  4. A. D. Pogrebnyak, O. V. Sobol’, V. M. Beresnev, P. V. Turbin, S. N. Dub, G. V. Kirik, and A. E. Dmitrenko, “Features of the structural state and mechanical properties of ZrN and Zr(Ti)-Si-N coatings obtained by ion-plasma deposition technique,” Tech. Phys. Lett. 35, 925–928 (2009).

    Article  CAS  Google Scholar 

  5. V. Dolique, A.-L. Thomann, P. Brault, Y. Tessier, and P. Gillon, “Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy,” Mater. Chem. Phys. 117, 142–147 (2009).

    Article  CAS  Google Scholar 

  6. M. Tsai, C. Wang, C. Tsai, W. Shen, J. Yeh, J. Gan, and W. Wu, “Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization,” J. Electrochem. Soc. 158, H1161–H1165 (2011).

    Article  CAS  Google Scholar 

  7. A. Li and X. Zhang, “Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements,” Acta Metall. Sin. (English Letters) 22, 219–224 (2009).

    Article  CAS  Google Scholar 

  8. S. A. Firstov, V. F. Gorban’, N. A. Krapivka, and E. P. Pechkovskii, “Strengthening and mechanical properties of cast high-entropy alloys,” Kompoz. Nanostrukt. No. 2, 5–20 (2011).

    Google Scholar 

  9. A. D. Pogrebnjak, V. V. Uglov, M. V. Il’yashenko, V. M. Beresnev, A. P. Shpak, M. V. Kaverin, N. K. Erdybaeva, Yu. A. Kunitskyi, Yu. N. Tyurin, O. V. Kolisnichenko, N. A. Makhmudov, and A. P. Shypylenko, “Nano-microcomposite and combined coatings on Ti-Si-NAA/C-Co-Cr/Steel and Ti-Si-N/(Cr3C2)75-(NiCr)25Base: Their structure and properties,” Ceram. Eng. Sci. Proc. 31(7), 115–126 (2010).

    Article  CAS  Google Scholar 

  10. O. V. Sobol’, A. D. Pogrebnyak, and V. M. Beresnev, “Effect of the preparation conditions on the phase composition, structure, and mechanical characteristics of vacuum-arc Zr-Ti-Si-N coatings,” Phys. Met. Metallogr. 112, 188–195 (2011).

    Article  Google Scholar 

  11. J. Musil, J. Vlcek, and P. Zeman, “Hard amorphous nanocomposite coatings with oxidation resistance above 1000°C,” Adv. Appl. Ceram. 107, 148–154 (2008).

    Article  CAS  Google Scholar 

  12. A. D. Korotaev, V. D. Borisov, V. Yu. Moshkov, C. V. Ovchinnikov, Yu. P. Pinzhin, and A. N. Tyumentsev, “Elastic stress state in superhard multielement coatings,” Phys. Mesomech. 12, 269–279 (2009).

    Article  Google Scholar 

  13. A. D. Korotaev, D. P. Borisov, D. Yu. Moshkov, S. V. Ovchinnikov, K. V. Oskomov, Yu. P. Pinzhin, V. M. Savostikov, and A. N. Tyumentsev, “Nanocomposite and nanostructured superhard Ti-Si-B-N coatings,” Russ. Phys. J. 50, 969–979 (2007).

    Article  CAS  Google Scholar 

  14. O. V. Sobol’, A. A. Andreev, V. F. Gorban’, N. A. Krapivka, V. A. Stolbovoi, I. V. Serdyuk, and V. E. Fil’chikov, “Reproducibility of the single-phase structural state of the multielement high-entropy Ti-V-Zr-Nb-Hf system and related superhard nitrides formed by the vacuum-arc method, Tech. Phys. Lett. 38, 616–619 (2012).

    Article  Google Scholar 

  15. I. V. Blinkov, A. O. Volkhonskii, V. N. Anikin, M. I. Petrzhik, and D. E. Derevtsova, “Phase composition and properties of wear resistant Ti-Al-Cr-Zr-Nb-N coatings manufactured by the arc-physical deposition method,” Inorg. Mater.: Appl. Res. 2, 285–291 (2011).

    Article  Google Scholar 

  16. Lin, Shao-Yi, Chang, Shou-Yi, Huang, Yi-Chung, Shieu, Fuh-Sheng, and Yeh., Jien-Wei, “Mechanical performance and nanoindenting deformation of (AlCrTa-TiZr)NCy multi-component coatings co-sputtered with bias,” Surf. Coat. Technol. 206, 5096–5102 (2012).

    Article  CAS  Google Scholar 

  17. J. Musil, “Hard nanocomposite coatings: Thermal stability and toughness,” Surf. Coat. Technol. 207, 50–65 (2012).

    Article  Google Scholar 

  18. A. D. Pogrebnjak and V. M. Beresnev, Nanocoatings Nanosystems Nanotechnologies (Bentham e Books, 2012).

    Google Scholar 

  19. A. D. Pogrebnjak, A. P. Shpak, V. M. Beresnev, D. A. Kolesnikov, Yu. A. Kunitsky, O. V. Sobol, V. V. Uglov, F. F. Komarov, A. P. Shypylenko, A. A. Demyanenko, V. S. Baidak, and V. V. Grudnitskii, J. Nanosci. Nanotechnol. 12, 9213–9219 (2012).

    Article  CAS  Google Scholar 

  20. Chang, Hui-Wen, Huang, Ping-Kang, Yeh, Jien-Wei, A. Davison, Tsau, Chun-Huai, and Yang, Chih-Chao, “Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multiprincipal component (AlCrMoSiTi)N coatings,” Surf. Coat. Technol. 202, 3360–3366 (2008).

    Article  CAS  Google Scholar 

  21. Lai, Chia-Han, Cheng, Keng-Hao, Lin, Su-Jein, and Yeh, Jein-Wei, “Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings,” Surf. Coat. Technol. 202, 3732–3738 (2008).

    Article  CAS  Google Scholar 

  22. Lai, Chia-Han, Tsai, Ming-Hung, Lin, Su-Jien, and Yeh, Jein-Wei, “Influence of substrate temperature on structure and mechanical properties of multi-element (AlCrTaTiZr)N coatings,” Surf. Coat. Technol. 201, 6993–6998 (2007).

    Article  CAS  Google Scholar 

  23. Yeh, Jein-Wei, Chen, Yu-Liang, Lin, Su-Jein, and Chen, Swe-Kai, “High-entropy alloys-A new era of exploitation,” Mater. Sci. Forum 560, 1–9 (2007).

    Article  CAS  Google Scholar 

  24. Simnra.com

  25. N. A. Azarenkov, O. V. Sobol’, A. D. Pogrebnyak, and V. M. Beresnev, Engineering of Vacuum-Plasma Coatings (Khark. Nat. Univ., Kharkov, 2011) [in Russian].

    Google Scholar 

  26. H.-E. Shaefer, “Investigation of thermal equilibrium vacancies in metals by positron annihilation,” Phys. Status Solidi A, 102, 47–65 (1987).

    Article  Google Scholar 

  27. S. V. Rempel’ and A. I. Gusev, “Surface segregation in decomposing carbide solid solutions,” JETP Lett. 88, 435–440 (2008).

    Article  Google Scholar 

  28. R. Wurschum, P. Farber, R. Dittmar, P. Scharwaechter, W. Frank, and H.-E. Schaefer, “Thermal vacancy formation and self-diffusion in intermetallic Fe3Si nanocrystallites of nanocomposite alloys,” Phys. Rev. Lett. 79, 4918–4921 (1997).

    Article  Google Scholar 

  29. V. I. Lavrent’ev, A. D. Pogrebnyak, and R. Shandrik, “Local surface segregations of implanted aluminum in weak-defected iron crystal,” Pis’ma Zh. Eksp. Teor. Fiz. 65, 86–89 (1997).

    Google Scholar 

  30. S. Veprek and M. G. J. Veprek-Heijman, “Limits to the preparation of superhard nanocomposites: Impurities, deposition and annealing temperature,” Thin Solid Films 522, 274–282 (2012).

    Article  CAS  Google Scholar 

  31. J. Musil, “Hard and superhard nanocomposite coatings,” Surf. Coat. Technol. 125, 322–330 (2000).

    Article  CAS  Google Scholar 

  32. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (FIZMATLIT, Moscow, 2005) [in Russian].

    Google Scholar 

  33. R. Krause-Rehberg and H. S. Leipner, Positron Annihilation in Semiconductors Defect Studies (Springer-Verlag, Berlin, 1999).

    Book  Google Scholar 

  34. A. D. Pogrebnyak, A. G. Ponomarev, D. A. Kolesnikov, V. M. Beresnev, F. F. Komarov, S. S. Mel’nik, and M. V. Kaverin, “Effect of mass transfer and segregation on the formation of superhard nanostructured Ti-Hf-N(Fe) coatings,” Tech. Phys. Lett. 38, 623–626 (2012).

    Article  CAS  Google Scholar 

  35. P. Misaelides, A. Hadzidimitrion, F. Noli, E. Pavlidou, and A. D. Pogrebnjak, “Investigation of the characteristics and corrosion resistance of Al2O3/TiN coatings,” Appl. Surf. Sci. 252, 8043–8049 (2006).

    Article  Google Scholar 

  36. A. D. Pogrebnjak, O. V. Sobol, V. M. Beresnev, P. V. Turbin, G. V. Kirik, N. A. Makhmudov, M. V. Il’yashenko, A. P. Shypylenko, M. V. Kaverin, M. Yu. Tashmetov, A. V. Pshyk, “Phase Composition, Thermal Stability, Physical and Mechanical Properties of Superhard on Based Zr-Ti-Si-N Nanocomposite coatings,” Sci. Proc. Wiley 31(7), 127–138 (2010).

    CAS  Google Scholar 

  37. A. D. Pogrebnjak, Sh. M. Ruzimov, D. L. Alontseva, P. Zukowski, K. Karwat, C. Kozak, M. Kolasik, “Structure and properties of coatings on Ni base deposited using a plasma jet before and after electron a beam irradiation,” Vacuum. 81(10), 1243–1251 (2007).

    Article  CAS  Google Scholar 

  38. A. D. Pogrebnjak, O. G. Bakharev, N. A. Pogrebnjak, Jr., Yu. V. Tsvintarnaya, V. T. Shablja, R. Sandrik, A. Zecca, “Certain features of High-dose and Intensive Implantation of Al ions in Iron,” Phys. Letters A. 265(3), 225–232 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Bilokur.

Additional information

Original Russian Text © R. Krause-Rehberg, A.D. Pogrebnyak, V.N. Borisyuk, M.V. Kaverin, A.G. Ponomarev, M.A. Bilokur, K. Oyoshi, Y. Takeda, V.M. Beresnev, O.V. Sobol’, 2013, published in Fizika Metallov i Metallovedenie, 2013, Vol. 114, No. 8, pp. 731–740.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause-Rehberg, R., Pogrebnyak, A.D., Borisyuk, V.N. et al. Analysis of local regions near interfaces in nanostructured multicomponent (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapor-deposition from an arc of an evaporating cathode. Phys. Metals Metallogr. 114, 672–680 (2013). https://doi.org/10.1134/S0031918X13080061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X13080061

Keywords

Navigation