Skip to main content
Log in

The effect of the magnetic field on optical properties of quantum wires

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Interband and intersubband optical transitions in quantum wires are studied theoretically with allowance for scattering of carriers by both long-wavelength acoustic vibrations in a homogeneous magnetic field with the strength vector H of which is directed perpendicularly to the nanostructure axis. The features of the absorption spectra of a weak electromagnetic wave with an increase in the magnetic field are studied. In particular, it is shown that new channels of light absorption appear for interband optical transitions in the presence of a magnetic field. With an increase in the magnitude of H, absorption maximums are shifted to the region of higher frequencies; in this process, distances between the absorption bands increase. For intersubband optical transitions, frequency dependences of light absorption coefficients are calculated and analyzed with allowance for light polarization (linearly and circularly polarized light). Conditions under which processes of carrier scattering on a rough surface have a significant effect on optical characteristics of nanowires are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Sinyavskii and N. S. Kostyukevich, Opt. Spectrosc. 114 (2), 205 (2013).

    Article  ADS  Google Scholar 

  2. C. W. J. Beenakker and H. Van Houten, Solid State Physics. Semiconductor Heterostructures and Nanostructures, Ed. by H. Ehrenreich and D. N. Turnbull (Academic, New York, 1991), Vol. 44, p. 83.

  3. V. A. Geiler, V. A. Margulis, and L. I. Filina, Zh. Eksp. Teor. Fiz. 113 (4), 1376 (1998).

    Google Scholar 

  4. V. A. Geiler and V. A. Margulis, Fiz. Tekh. Poluprovodn. 33 (9), 1141 (1999).

    Google Scholar 

  5. R. Kubo, J. Phys. Soc. Jap. 12 (6), 570 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  6. M. R. Black, M. Padi, S. B. Cronin, Y.-M. Lin, O. Rabin, T. McClure, G. Dresselhaus, P. L. Hagelstein, and M. S. Dresselhaus, Appl. Phys. Lett. 77 (25), 4142 (2000).

    Article  ADS  Google Scholar 

  7. M. R. Black, Y.-M. Lin, S. B. Cronin, O. Rabin, and M. S. Dresselhaus, Phys. Rev. B 65 (19), 195417 (2002).

    Article  ADS  Google Scholar 

  8. A. J. Levin, M. R. Black, and M. S. Dresselhaus, Phys. Rev. B 79 (16), 165117 (2009).

    Article  ADS  Google Scholar 

  9. H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka, and T. Matsusue, Appl. Phys. Lett. 51 (23), 1934 (1987).

    Article  ADS  Google Scholar 

  10. E. P. Sinyavskii and V. G. Solovenko, Phys. Sol. St. 56 (11), 2269 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Kanarovskii.

Additional information

Original Russian Text © E.P. Sinyavskii, E.Yu. Kanarovskii, N.S. Kostyukevich, 2015, published in Optika i Spektroskopiya, 2015, Vol. 119, No. 5, pp. 783–789.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinyavskii, E.P., Kanarovskii, E.Y. & Kostyukevich, N.S. The effect of the magnetic field on optical properties of quantum wires. Opt. Spectrosc. 119, 805–811 (2015). https://doi.org/10.1134/S0030400X15110211

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X15110211

Keywords

Navigation