Skip to main content
Log in

The influence of temperature on red-edge excitation effects in liquid solutions of N,N′-dimethylaminobenzonitrile

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A systematic study of new photophysical and photochemical processes in solutions is continued by the example of a recently found phenomenon of redistribution of the intensities of two fluorescence bands of N,N′-Dimethylaminobenzonitrile (DMABN) in polar solutions at room temperatures under selective irradiation by light with different photon energies in the region of the long-wavelength absorption band. The effects observed are explained using data of quantum-mechanical calculations, which reveal that solutions of these systems are very likely to contain rotational isomers with different orientations of the dimethylamino group with respect to the plane of the benzonitrile residue. The excited-state charge transfer reactions in these rotamers occur in different ways and, hence, with different rates, because of which the intensity ratio of recorded fluorescence bands is different for different wavelengths of selective excitation. In this study, the influence of the temperature on the red-edge excitation effect observed in the fluorescence of DMABN solutions in acetonitrile is studied in the temperature range of 274–313 K using the previously used selective excitation method. It is found that these effects manifest themselves at any temperature within this range, but are especially strong at 313 K. The parameters of the dual fluorescence that are most sensitive for recording of the considered effects are determined, and the obtained temperature dependences are interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Molecular Interactions, Ed. by H. Ratajczak and W. J. Ortwille-Thomas (Willey, New York, 1983), Vol. 2.

    Google Scholar 

  2. J. Lakowicz, Principles of Fluorescent Spectroscopy (Plenum, New York, 1984).

    Google Scholar 

  3. B. Valeur, Molecular Fluorescence. Principles and Applications, 4th ed. (Wiley-VCH, New York, 2007).

    Google Scholar 

  4. Z. R. Grabowsky, K. Rotkiewicz, and W. Rettig, Chem. Rev. 103, 3899 (2003).

    Article  Google Scholar 

  5. A. P. Demchenko, Fundamental Photoprocesses and Inhomogeneous Broadening of Electronic Spectra of Organic Molecules, Ed. by V. I. Tomin (Wyd. PAP, Slupsk 2006), p. 79.

  6. A. P. Demchenko, Introduction to Fluorescence Sensing (Springer-Verlag, Berlin, 2009).

    Book  Google Scholar 

  7. C. C. Hsieh, M. L. Ho, and P. T. Chou, in Springer Series on Fluorescence, Methods and Applications. Advanced Fluorescence Reporters in Chemistry and Biology I. Fundamentals and Molecular Design, Ed. by A. Demchenko (Springer, New York, 2010), Vol. 8, p. 225.

  8. E. Lippert, W. Luder, F. Moll, W. Nagele, H. Boos, H. Prigge, and I. Seibold-Blankenstein, Angew. Chem. 73, 695 (1961).

    Article  Google Scholar 

  9. Z. R. Grabowski, K. Rotkiewicz, A. Siemiarczuk, D. J. Cowley, and W. Baumann, Nouv. J. Chim. 3, 2013 (1979).

    Google Scholar 

  10. U. Leinhos, W. Kuhle, and K. A. Zachariasse, J. Phys. Chem. 95, 2013 (1991).

    Article  Google Scholar 

  11. K. A. Al-Hassan and W. Rettig, Chem. Phys. Lett. 126(3), 273 (1986).

    Article  ADS  Google Scholar 

  12. D. Braun and W. Rettig, Chem. Phys. Lett. 268, 110 (1997).

    Article  ADS  Google Scholar 

  13. V. I. Tomin and K. Hubisz, Opt. Spektrosk. 112(5), 769 (2012).

    Article  Google Scholar 

  14. V. I. Tomin and K. Hubisz, Opt. Spektrosk. 110(5), 762 (2011).

    Article  Google Scholar 

  15. N.G. Bakhshiev, Spectroscopy of Intermolecular Interactions (Nauka, Leningrad, 1972) [in Russian].

    Google Scholar 

  16. N. G. Bakhshiev, Photophysics of Dipole-Dipole Interactions: Solvation and Complexation Processes l (St. Petersburg Gos. Univ., St. Petersburg, 2005) [in Russian].

    Google Scholar 

  17. W. Demtröder, Laser spectroscopy. Basic concepts and instrumentation (Springer-Verlag, New York, 1988).

    Google Scholar 

  18. V. S. Antonov, G. I. Bekov, M. A. Bol’shov, V. P. Zharov, V. S. Letokhov, Yu. A. Kuritsyn, R. I. Personov, and A. N. Shibanov, Laser Analytical Spectroscopy (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  19. V. I. Tomin, in Springer Series on Fluorescence, Methods and Applications. Advanced Fluorescence Reporters in Chemistry and Biology I. Fundamentals and Molecular Design, Ed. by A. Demchenko (Springer, Heidelberg, Dordrecht, London, N.Y., 2010), Vol. 8, p. 189.

  20. A. N. Terenin Photonics of Molecules of Dyes and Related Organic Compounds (Nauka, Leningrad 1967) [in Russian].

    Google Scholar 

  21. B. I. Stepanov, Luminescence of Complex Molecules (Izd-vo AN BSSR, Minsk, 1955) [in Russian].

    Google Scholar 

  22. M. A. El’yashevich, Atomic and Molecular Spectroscopy (Fiz.-mat. Lit., Moscow, 1962) [in Russian].

    Google Scholar 

  23. W. Liptay, Z. Naturforsch., A: Phys. Sci. 20, 1441 (1965).

    ADS  Google Scholar 

  24. E. Lippert, in Organic Molecular Photophysics, Ed. by J. B. Birks (Wiley, London, 1975), p. 1.

  25. W. C. Galley and R. M. Purkey, Proc. Natl. Acad. Sci. U.S.A. 67, 1167 (1970).

    Article  Google Scholar 

  26. A. N. Rubinov and V. I. Tomin, Opt. Spektrosk. 29, 1082 (1970).

    Google Scholar 

  27. A. N. Rubinov and V. I. Tomin, Opt. Spektrosk. 32, 32 (1971).

    Google Scholar 

  28. G. Weber and M. Sinitsky, Proc. Natl. Acad. Sci. USA 65, 823 (1970).

    Article  ADS  Google Scholar 

  29. A. Nemkovich, A. N. Rubinov, and V. I. Tomin, in Topics in Fluorescence Spectroscopy: Principles, Ed. by Ed. by J. R. Lakowicz (Plenum, New York, 1991), Vol. 2, p. 367.

  30. A. P. Demchenko, J. Liminesc. 17, 19 (2002).

    Article  Google Scholar 

  31. A. B. J. Parusel, Phys. Chem. Chem. Phys. 2, 5545 (2000).

    Article  ADS  Google Scholar 

  32. D. Rappoport and F. Furche, J. Am. Chem. Soc. 126, 1277 (2004).

    Article  Google Scholar 

  33. I. F. Galvan, M. E. Martin, and A. Aguilar, J. Chem. Theory Comp. 6, 2445 (2010).

    Article  Google Scholar 

  34. I. G. Shere, V. P. Pawar, and S. C. Mehrotra, J. Mol. Liq. 133, 116 (2007).

    Article  Google Scholar 

  35. M. A. Kahlow, T. J. Kang, and P. E. Barbara, Adv. Photo Chem. 15, 1 (1990).

    Google Scholar 

  36. A. S. R. Koti and N. Pieriasamy, Res. Chem. Intermediates 28, 831 (2002).

    Article  Google Scholar 

  37. P. Changenet, P. Plaza, and Y. H. Meyer, J. Phys. Chem. A 101, 8186 (1997).

    Article  Google Scholar 

  38. V. I. Tomin, in Hydrogen Bonding and Transfer in the Excited State, Ed. by Ke-Li-Han (Willey, New York, 2011), Vol. 2, p. 463.

  39. V. I. Tomin, Opt. Spektrosk. 113(1), 35 (2012).

    ADS  Google Scholar 

  40. M. Brozis, K. A. Kozyra, V. I. Tomin, and Yu. Khel’dt, Zh. Prikl. Spektrosk. 69, 480 (2002).

    Google Scholar 

  41. V. I. Tomin and K. Hubisz, Opt. Spektrosk. 101(1), 104 (2006).

    Article  ADS  Google Scholar 

  42. M. Jozefowicz, J. Fluoresc. 21, 239 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Tomin.

Additional information

Original Russian Text © V.I. Tomin, A. Wlodarkiewicz, 2013, published in Optika i Spektroskopiya, 2013, Vol. 115, No. 1, pp. 98–107.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomin, V.I., Wlodarkiewicz, A. The influence of temperature on red-edge excitation effects in liquid solutions of N,N′-dimethylaminobenzonitrile. Opt. Spectrosc. 115, 86–93 (2013). https://doi.org/10.1134/S0030400X13050202

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X13050202

Keywords

Navigation