Optics and Spectroscopy

, Volume 101, Issue 3, pp 450–457

Laguerre-Gaussian beams with complex and real arguments in a uniaxial crystal

  • A. V. Volyar
  • T. A. Fadeeva
Nonlinear and Quantum Optics

DOI: 10.1134/S0030400X06090190

Cite this article as:
Volyar, A.V. & Fadeeva, T.A. Opt. Spectrosc. (2006) 101: 450. doi:10.1134/S0030400X06090190

Abstract

A solution to the paraxial wave equation for Laguerre-Gaussian beams with complex and real arguments in a uniaxial crystal is found and analyzed. It is shown that the beams with a complex argument form a complete group of the solution, while the beams with a real argument satisfy the equation only for an arbitrary radial index, with the azimuthal index being fixed and equal to l = 1. The evolution of phase singularities is considered by the example of transformation of the structure of topological multipoles and generation of optical vortices.

PACS numbers

42.25.Ja42.60.Jf

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. V. Volyar
    • 1
  • T. A. Fadeeva
    • 1
  1. 1.National Taurida Vernadsky UniversitySimferopolUkraine