Skip to main content
Log in

Degradation of natural rubber latex by new Streptomyces labedae strain ASU-03 isolated from Egyptian soil

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Natural rubber latex is one of the problems that raises the environmental concerns. In this study the degrading ability of Ficus elastica rubber latex by a bacterium strain ASU-03, isolated from Egyptian soil was assessed. The strain was able to produce clear zone around its colony on latex rubber containing medium and was identified by conventional methods as Streptomyces sp. Phylogenetic analysis of 16S rRNA (16S rRNA) and RNA polymerase ß-subunit (rpoB) genes were applied. Results of the 16S rRNA gene analysis revealed that the strain was highly related to Streptomyces sp. (100% similarity), so the rpoB gene was partially sequenced to clarify the specific name of the isolate. Phylogenetic tree based on rpoB gene sequences indicated that strain ASU-03 was highly similar to the reference strain Streptomyces labedae and both were shared a one cluster. The current results demonstrated that the use of a rpoB gene-based method gives a better resolution in the species level identification. To our knowledge, this species has never been reported to be involved in natural rubber degradation. This was therefore the first report about the degradation of Ficus elastic by S. labedae. The degradation of Ficus elastica rubber latex was determined by measuring the increase in protein content of bacterium (mg/g dry wt), reduction in molecular weight (g/mol) and inherent viscosity (dL/g) of the latex. Moreover the degradation was also confirmed by formation of aldehyde or keto group by Schiff’s reagent and by observing the growth of the Streptomyces strain using scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rifaat, H.M. and Yosery, M.A., Identification and characterization of rubber degrading Actinobacteria, Appl. Ecol. Environ. Res., 2004, vol. 2, pp. 63–70.

    Article  Google Scholar 

  2. Rose, K. and Steinbuchel, A., Biodegradation of natu-ral rubber and related compounds; recent insights into hardly understood catabolic capability of microorgan-isms, Appl. Environ. Microbiol., 2005, vol. 2, pp. 2803–2812.

    Article  Google Scholar 

  3. Bröker., D., Arenskötter, M., Legatzki, A., Nies, D.H., and Steinbüchel, A., Characterization of the 101-kilo-base-pair megaplasmid pKB1 isolated from the rub-ber-degrading bacterium Gordonia wetfalicia Kb1, J. Bacteriol., 2004, vol.2, pp. 212–225.

    Article  Google Scholar 

  4. Rose, K., Tenberge, K.B., and Steinbüchel, A., Identi-fication and characterization of genes from Streptomyces sp. strain K30 responsible for clear zone formation on natural rubber latex and poly (cis-1,4-isoprene) rub-ber degradation, Biomacromolecules, 2005, vol. 2, pp. 180–188.

    Article  Google Scholar 

  5. Ibrahim, E.M., Arenskotter, M., Luftmann, H., and Steinbuchel, A., Identification of poly cis-1,4 iso-prene degradation intermediates during growth of moderately thermophilic actinomycetes on rubber and cloning of a functional Kp homologue from Nocardia farcinia strain E, Appl. Environ.Microbiol., 2006, vol. 2, pp. 3375–3382.

    Article  Google Scholar 

  6. Warneke, S., Arenskötter, M., Tenberge, K.B., and Bhowmick, A.K., Bacterial degradation of poly (trans-1,4-isoprene) (gutta percha), Microbiology (UK), 2007, vol. 2, pp. 347–356.

    Article  Google Scholar 

  7. Bröker, D., Dietz, D., Arenskötter, M., and Stein-büchel, A., The genomes of non-clearing-zone-form-ing and natural rubber-degrading species Gordonia polyisoprenivorans and Gordonia westfalica harbor genes expressing Lcp activity in Streptomyces strains, Appl. Environ. Microbiol., 2008, vol. 2, pp. 2288–2297.

    Article  Google Scholar 

  8. Yikmis, M., Arenskötter, M., Rose, K., and Lange, N., Wernsmann, H., Wiefel, L., and Steinbüchel, A., Secretion and transcriptional regulation of the latex-clearing protein, Lcp, by the rubber degrading bacterium Streptomyces sp. Strain K30, Appl. Environ. Microbiol., 2008, pp. 5373–5382.

    Google Scholar 

  9. Arenskötter, M., Baumeister, D., Berekaa, M.M., Pöt-ter, G., Kroppenstedt, R.M., Linos, A. and Stein-büchel, A., Taxonomic characterization of two rubber degrading bacteria belonging to the species Gordonia polyisoprenivorans and analysis of hypervariable regions of 16S rDNA sequences, FEMS Microbiol. Let., 2001, vol. 2, no. 3, pp. 277–282.

    Article  Google Scholar 

  10. Hesham, A., Mohammed, N.H., Ismail, M.A., and Shoreit, A.A., 16S rRNA gene sequences analysis of Ficus elastic rubber latex degrading thermophilic Bacillus strain ASU7 isolated from Egypt, Biodegradation, 2012, vol. 2, pp. 717–724.

    Article  Google Scholar 

  11. Wititsuwannakul, D. and Wititsuwannakul, R., Bio-chemistry of natural rubber and structure of latex, in Biopolymers, Polyisoprenoids, Koyama T. and Stein-buchel, A., Eds., Wiley–VCH, Germany, 2001, vol. 2, pp. 151–201.

    CAS  Google Scholar 

  12. Kang, H., Kang, M.Y., and Han, K.H., Identification of natural rubber and characterization of rubber biosyn-thetic activity in fig tree, Plant Physiol., 2000, vol. 2, pp. 1133–1142.

    Article  Google Scholar 

  13. Heisey, R.M. and Papadatos, S., Isolation of microor-ganisms able to metabolize purified natural rubber, Appl. Environ. Microbiol., 1995, vol. 2, pp. 3092–3097.

    Google Scholar 

  14. Lowery, O.H., Rosebrough, N.H., Farr, A.L., et al., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 2, pp. 291–297.

    Google Scholar 

  15. Aly, K. I., Wahdan, H., and Hussein, A.M., New poly-mer syntheses, part 43: novel polyamides-based dia-rylidenecyclopentanone: synthesis, characterization and corrosion inhibition behaviour, J. Appl. Polymer Sci., 2009, vol. 2, pp. 513–523.

    Article  Google Scholar 

  16. Linos, A., Berekka, M.M., Reichett, R., and Randall, R.J., Biodegradation of cis 1,4 polyisoprene rubbers by distinctactinomycetes: microbial strategies and detailed surface analysis, Appl. Environ. Microbiol., 2000, vol. 2, pp. 1639–1645.

    Article  Google Scholar 

  17. Ehrlich, G., Taylor, H.E., and Waelsch, H., The effect of surface-active substances on the fuchsin reaction of higher fatty aldehydes, J. Biol. Chem., 1948, vol. 2, pp. 547–551.

    Google Scholar 

  18. Sneath, P.H.A., Bergey’s Manual of Systematic Bacteri-ology, vol. 2, Baltimore: Williams and Wilkins, 1986.

  19. Hesham, A., New safety and rapid method for extraction of genomic DNA from bacteria and yeast strains suitable for PCR amplifications. J. Pure Appl. Microbiol., 2014, vol. 2, no. 3, pp. 383–388.

    Google Scholar 

  20. Lane, D.J., 16S/23S rRNA sequencing, in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M., Eds., New York: Wiley, 1991, pp. 115–175.

  21. Kim, B.J., Kim, C.J., Chun, J., and Koh, Y.H., Lee, S.H., Hyun,.W., Cha, C.Y., and Kook, Y.H., Phy-logenetic analysis of the genera Streptomyces and Kitasatospora based on partial RNA polymerase b-subunit gene (rpoB) sequences, Int. J. Syst. Evol. Microbiol., 2004, vol. 2, pp. 593–598.

    Article  Google Scholar 

  22. Tsuchii, A., Takeda, K., and Tokiwa, Y., Degradation of the rubber in truck tyres by a strain of Nocardia, Biodeg-radation, 1996, vol. 2, pp. 405–413.

    Google Scholar 

  23. Roy, R.V., Das, M., Banerjee, R., et al., Comparative studies on rubber biodegradation through solid-state and submerged fermentation, J. Process Bioch., 2006, vol. 2, pp. 181–186.

    Article  Google Scholar 

  24. Bode, H.B., Zeeck, A., Pluckhahn, K., and Jen-drossek, D., Physiological and chemical investigations into microbial degradation of synthetic poly (cis-1,4-isoprene), Appl. Environ. Microbiol., 2000, vol. 2, pp. 3680–3685.

    Article  Google Scholar 

  25. Braaz, R., Fischer, P., and Jendrossek, D., Novel type of heme-dependent oxygenase catalyzes oxidative cleav-age of rubber (poly-cis-1,4-isoprene), Appl. Environ. Microbiol., 2004, pp. 7388–7395.

    Google Scholar 

  26. Spence, D. and Van-Niel, C.B., Bacterial decomposi-tion of the rubber in Hevea latex, Ind. Eng. Chem., 1936, vol. 2, pp. 847–850.

    Article  Google Scholar 

  27. Nette, I. T., Pomortseva, N.V., and Kozlova, E.I., Destruction of rubber by microorganisms, Microbi-ologiya, 1959, vol. 2, pp. 821–827.

    Google Scholar 

  28. Bode, H.B., Kerkhoff, K., and Jendrossek, D., Bacte-rial degradation of natural and synthetic rubber, Bio-macromolecules, 2001, vol. 2, no. 3, pp. 295–303.

    Article  CAS  Google Scholar 

  29. Tsuchii, A. and Tokiwa, Y., Microbial degradation of tyre rubber particles, Biotechnol. Lett., 2001, vol. 2, pp. 963–969.

    Article  Google Scholar 

  30. Kumar, Y. and Goodfellow, M., Reclassification of Streptomyces hygroscopicus strains as Streptomyces aldersoniae sp. nov., Streptomyces angustmyceticus sp. nov., comb. nov., Streptomyces ascomycinicus sp. nov., Streptomyces decoyicus sp. nov., comb. nov., Streptomyces milbemycinicus sp. nov. and Streptomyces wellingto-niae sp. nov., Int. J. Syst. Evol. Microbiol., 2010, vol. 2, pp. 769–775.

    Article  Google Scholar 

  31. Imai, S., Ichikawa, K., Muramatsu, Y., Kasai, D., Masai, E., and Fukuda, M., Isolation and characteriza-tion of Streptomyces, Actinoplanes, and Methylibium strains that are involved in degradation of natural rub-ber and synthetic poly(cis-1,4-isoprene), Enz. Microb. Technol., 2011, vol. 2, pp. 526–531.

    Article  Google Scholar 

  32. Tamura, T., Oguchi, A., Kikuchi, T., Kikuchi, H., Nishii, T., Tsuji, K., Yamaguchi, Y., Tase, A., Taka-hashi, M., Sakane, T., Suzuki, K.I., and Hatano, K., Phylogenetic study of the species within the family Streptomycetaceae, A. van Leeuwenhoek, 2012, vol. 2, pp.73–104.

    Google Scholar 

  33. Dahllof, I., Baillie, H., and Kjelleberg, S., rpoB-based microbial community analysis avoids limitations inher-ent in 16S rRNA gene intraspecies heterogeneity, Appl. Environ. Microbiol., 2000, vol. 2, pp. 3376–3380.

    Article  Google Scholar 

  34. Ueda, K., Seki, T., Kudo, T., Yoshida, T., and Kataoka, M., Two distinct mechanisms cause hetero-geneity of 16S rRNA, J. Bacteriol., 1999, vol. 2, pp. 78–82.

    Google Scholar 

  35. Han, J., Cho, M., and Kim, S., Ribosomal and protein coding gene based multigene phylogeny on the family Streptomycetaceae, Syst. Appl. Microbiol., 2012, vol. 2, pp. 1–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. M. Shoreit.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hesham, A.EL., Mohamed, N.H., Ismail, M.A. et al. Degradation of natural rubber latex by new Streptomyces labedae strain ASU-03 isolated from Egyptian soil. Microbiology 84, 351–358 (2015). https://doi.org/10.1134/S0026261715030078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261715030078

Keywords

Navigation