Skip to main content
Log in

Effect of Bacillus pumilus ribonuclease on the paramagnetic centers of microbial cells

Microbiology Aims and scope Submit manuscript

Abstract

The potential clinical application of Bacillus pumilus cytotoxic ribonuclease (binase) for selectively inducing the death of tumor cells makes it imperative to investigate its effect on the normal human microflora. Flow cytometry was used to determine that binase concentration causing the apoptosis of cancer cells had no effect of the viability of Escherichia coli K12. The changes in the paramagnetic centers of E. coli K12 cells in the presence of nontoxic binase concentrations revealed by EPR spectroscopy included higher EPR signals from iron-containing proteins (including those from the Fe-S clusters) and of the Mn(II) hyperfine structure. The TMTH spin probe (N-(1-hydroxy-2,2,6,6-tetramethylpiperidine-4-il)-2-methylpropanamide hydrochloride) was used to reveal a twofold increase in the levels of reactive oxygen species (ROS) in the cells, which induced oxidative stress in the enzyme-treated bacteria. Inductively coupled plasma mass spectrometry revealed elevated contents of alkaline (Li, Na, K), alkali earth (Mg, Ca), transition (Cr, Mn, Fe, Cu, Zn), and post-transition metals (Bi, Pb) in the cells. Elevated levels of Cu and Zn (which impair the activity of the respiratory chain enzymes) and of Mn, which is known as a superoxide dismutase cofactor, confirmed development of the oxidative stress in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Deutscher, M.P. and Li, Z., Exoribonucleases and their multiple roles in RNA metabolism, Prog. Nucl. Acid Res. Mol. Biol., 2001, vol. 66, pp. 67–105.

    Article  CAS  Google Scholar 

  2. Rittmann, D., Sorger-Herrmann, U., and Wendisch, V.F., Phosphate starvation-inducible gene ushA encodes a 5’ nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source, Appl. Environ. Microbiol., 2005, vol. 71, no. 8, pp. 4339–4344.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kolpakov, A.I. and Kupriyanova, F.G., Effect of exogenous ribonucleases on the propagation of Candida tropicalis yeast, Microbiology (Moscow), 1992, vol. 61, pp. 680–683.

    Google Scholar 

  4. Makarov, A.A., Kolchinsky, A., and Ilinskaya, O.N., Binase and other microbial RNases as potential anticancer agents, BioEssays, 2008, vol. 30, no. 8, pp. 781–790.

    Article  CAS  PubMed  Google Scholar 

  5. Kolpakov, A.I. and Kupriyanova-Ashina, F.G., Extracellular Factors of Microorganism Development Regulation, Saarbrucken: LAP LAMBERT Academic Publishing, 2012, pp. 36–38.

    Google Scholar 

  6. Mitkevich, V.A., Petrushanko, I.Y., Kretova, O.V., Zelenikhin, P.V., Prassolov, V.S., Tchurikov, N.A., Ilinskaya, O.N., and Makarov, A.A., Oncogenic c-kit transcript is a target for binase, Cell Cycle, 2010, vol. 9, no. 13, pp. 2674–2678.

    Article  CAS  PubMed  Google Scholar 

  7. Ilinskaya, O.N., Zelenikhin, P.V., Petrushanko, I.Y., Mitkevich, V.A., Prasolov, V.S., and Makarov, A.A., Binase induces apoptosis of transformed myeloid cells and does not induce T-cell immune response, BBRC, 2007, vol. 361, no. 4, pp. 1000–1005.

    CAS  PubMed  Google Scholar 

  8. Beinert, H. and Kiley, P.J., Fe?S proteins in sensing and regulatory functions, Curr. Opin. Chem. Biol., 1999, vol. 3, no. 2, pp. 152–157.

    Article  CAS  PubMed  Google Scholar 

  9. Swartz, H.M., Khan, N., Buckey, J., Comi, R., Gould, L., Grinberg, O., Hartford, A., Hopf, H., Hou, H., Hug, E., Iwasaki, A., Lesniewski, P., Salikhov, I., and Walczak, T., Clinical applications of EPR: Overview and perspectives, NMR Biomed., 2004, vol. 17, no. 5, pp. 335–351.

    Article  CAS  PubMed  Google Scholar 

  10. Schulga, A., Kurbanov, F., Kirpichnikov, M., Protasevich, I., Lobachov, V., Ranjbar, B., Chekhov, V., Polyakov, K., Engelborghs, Y., and Makarov, A., Comparative study of binase and barnase: experience in chimeric ribonucleases, Protein Eng., 1998, vol. 11, no. 9, pp. 773–780.

    Article  Google Scholar 

  11. Shi, L., Günther, S., Hübschmann, T., Wick, L.Y., Harms H., and Müller, S. Limits of propidium iodide as a cell viability indicator for environmental bacteria, Cytometry, 2007, vol. 71, no. 8, pp. 592–598.

    Article  PubMed  Google Scholar 

  12. Kozlov, A.V., Szalay, L., Umar, F., Fink, B., Kropik, K., Nohl, H., Redl, H., and Bahrami, S., Epr analysis reveals three tissues responding to endotoxin by increased formation of reactive oxygen and nitrogen species, Free Rad. Biol. Med., 2003, vol. 34, no. 12, pp. 1555–1562.

    Article  CAS  PubMed  Google Scholar 

  13. Ivanov, S.I., Podunova, L.G., Skatchkov, V.B., Tutelyan, V.A., Skalny, A.V., Demidov, V.A., Skalnaya, M.G., Serebryansky, E.P., Grabeklis, A.R., and Kuznetsov, V.V., Determination of Trace Elements in Biological Media and Preparations by Atom Emission Spectrometry with Inductively Coupled Plasma and Mass-Spectrometry Methods. Methodic Recommendations (MUK 1482-03, MUK 4.1.1483-03). Moscow: Federal Center of SanEpidService, 2003.

    Google Scholar 

  14. Azhipa, Ya.I., Biomedical Aspects of Application of Electron Paramagnetic Resonance, Moscow: Nauka, 1983.

    Google Scholar 

  15. Kovalenko, O.A., Anfalova, T.V., Sokolov, V.S., and Chibrikin, V.M., Quantitative study of EPR spectra of frozen preparations of animal tissues, Biofizika, 1971, vol. 16, no. 4, pp. 663–666.

    CAS  PubMed  Google Scholar 

  16. Cammack, R. and MacMillan, F., Electron magnetic resonance of iron-sulfur proteins in electron-transfer chains: Resolving complexity, in Metals in Biology: Applications of High-Resolution EPR to Metalloenzymes, Hanson, G. and Berliner, L.L., Eds., Springer Sci., pp. 11–44.

  17. Keyer, K. and Imlay, J., Superoxide accelerates DNA damage by elevating free-iron levels, Biochemistry, 1996, vol. 93, no. 24, pp. 13635–13640.

    CAS  Google Scholar 

  18. Srinivasan, C., Liba, A., Imlay, J.A., Valentine, J.S., and Gralla, E.B., Yeast lacking superoxide dismutase(s) show elevated levels of “free iron” as measured by whole cell electron paramagnetic resonance, J. Biol. Chem., 2000, vol. 275, no. 38, pp. 29187–29192.

    Article  CAS  PubMed  Google Scholar 

  19. Pan, X., Zhang, X., Sun, H., Zhang, J., Yan, M., and Zhang, H., Autophagy inhibition promotes 5-fluorouracil-induced apoptosis by stimulating ROS formation in human non-small cell lung cancer A549 cells, PLoS One, 2013, vol. 8, no. 2, p. e56679.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Das, S., Das, J., Samadder, A., Boujedaini, N., and Khuda-Bukhsh, A.R., Apigenin-induced apoptosis in A375 and A549 cells through selective action and dysfunction of mitochondria, Exp. Biol. Med. (Maywood), 2012, vol. 237, no. 12, pp. 1433–1448.

    Article  CAS  Google Scholar 

  21. Ilinskaya, O.N., Koschinski, A., Repp, H., Mitkevich, V.A., Dreyer, F., Scholtz, J.M., Pace, C.N., and Makarov, A.A., RNase-induced apoptosis: fate of calcium-activated potassium channels, Biochimie, 2008, vol. 90, no. 5, pp. 717–725.

    Article  CAS  PubMed  Google Scholar 

  22. Kurland, C.G. and Andersson, S.G., Origin and evolution of the mitochondrial proteome, Microbiol. Mol. Biol. Rev., 2000, vol. 64, no. 4, pp. 786–820.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Cadenas, E. and Davies, K.J., Mitochondrial free radical generation, oxidative stress, and aging, Free Radic. Biol. Med., 2000, vol. 29, nos. 3–4, pp. 222–230.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, D.X. and Gutterman, D.D., Mitochondrial reactive oxygen species-mediated signaling in endothelial cells, Am. J. Physiol. Heart Circ. Physiol., 2007, vol. 292, no. 5, pp. 2023–2031.

    Article  Google Scholar 

  25. Lanciano, P., Khalfaoui-Hassani, B., Selamoglu, N., Ghelli, A., Rugolo, M., and Daldal, F., Molecular mechanisms of superoxide production by complex III: A bacterial versus human mitochondrial comparative case study, Biochim. Biophys. Acta, 2013, vol. 1827, pp. 1332–1339. doi: 10.1016/j.bbabio.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  26. Benov, L., How superoxide radical damages the cell, Protoplasma, 2001, vol. 217, nos. 1–3, pp. 33–36.

    Article  CAS  PubMed  Google Scholar 

  27. Rensing, C. and McDevitt, S.F., The copper metallome in prokaryotic cells, Met. Ions Life Sci., 2013, vol. 12, pp. 417–450.

    Article  PubMed  Google Scholar 

  28. Blencowe, D.K. and Morby, A.P., Zn(II) metabolism in prokaryotes, FEMS Microbiol. Rev., 2003, vol. 27, pp. 291–311.

    Article  CAS  PubMed  Google Scholar 

  29. Jakubovics, N.S. and Jenkinson, H.F., Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria, Microbiology (UK), 2001, vol. 147, pp. 1709–1718.

    CAS  Google Scholar 

  30. Inaoka, T., Matsumura, Y., and Tsuchido, T., SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis, J. Bacteriol., 1999, vol. 181, no. 6, pp. 1939–1943.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Zelenikhin.

Additional information

Original Russian Text © P.V. Zelenikhin, A.V. Makeeva, A.P. Lozhkin, A.A. Rodionov, N. Nguen, O.N. Ilinskaya, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 1, pp. 56–62.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelenikhin, P.V., Makeeva, A.V., Lozhkin, A.P. et al. Effect of Bacillus pumilus ribonuclease on the paramagnetic centers of microbial cells. Microbiology 82, 772–777 (2013). https://doi.org/10.1134/S0026261714010172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714010172

Keywords

Navigation