Skip to main content
Log in

The fungal cell wall: Modern concepts of its composition and biological function

  • Review Papers
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

This review deals with the cell wall (CW), a poorly known surface structure of the cell of mycelial fungi. Data are presented concerning (i) isolation techniques and purity control methods securing the absence of the cytoplasm content in the CW fraction and (ii) the chemical composition of the CW. The structural (backbone) and intrastructural components of the CW, such as aminopolysaccharides, α- and β-glucans, proteins, lipids, uronic acids, hydrophobins, sporopollenin, and melanins, are discussed in detail. Special attention is given to chitin and its novel function in terms of protecting the cells from stress as well as to the differences of this fungal aminopolysaccharide from the chitin of algae and Arthropoda. The apical growth of hyphae and the involvement of special microvesicles in morphogenesis of a fungal cell are discussed. Data on the enzymes involved in CW synthesis and lysis are presented. In conclusion, the functional role of the fungal CW is discussed in juxtaposition to the surface structures of higher eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Feofilova, E.P., Kletochnaya stenka gribov. Nauka (The Cell Wall of Fungi), Moscow, 1983.

  2. Gooday, G.W, Inhibition of Chitin Metabolism, in Biochemistry of Cell Walls and Membranes in Fungi, Kuhn, P.J., Trinci, A.P.J., Jung, M.J., Goosey, M.W., and Copping, L.G., Eds., Berlin: Springer, 1990, pp. 60–79.

    Google Scholar 

  3. Sachs, M., Postranscriptional Control of Gene Expression in Filamentous Fungi, Fungal Gen. Biol., 1998, vol. 23, pp. 117–128.

    Article  CAS  Google Scholar 

  4. Pospieszny, H., Application of Chitosan in Plant Protection: Possibilities and Limitations, 8th Int. Conf. Eur. Chitin Soc. Abstracts Podium Presentation, Antalia (Turkey): Euchis, 2007.

    Google Scholar 

  5. Kanarskaya, Z.A., Gamayurova, V.S., Shabrukova, N.V., Gogelashvili, G.Sh., Grunin, Yu.B., Kanarskii, A.V., and Izbranova, S.I., Effect of Treatment Conditions on the Supramolecular Structure and Adsorption Properties of the Chitin-Glucan Complex Isolated from the Biomass of the Mycelial Fungus Aspergillus niger, Biotekhnologiya, 2000, no. 3, pp. 63–66.

  6. Chitnis, M., Ghormade, V., and Deshpande, M.V., Regulation of Chitin Metabolism in the Dimorphic Fungus Benjaminiella poitrasii, in Chitin Metabolism, Muzzarelli, R.A.A., Ed., Ates (Italy), 2001, pp. 541–551.

  7. Wösten, H.A.B., Hydrophobins: Multipurpose Proteins, Annu. Rev. Microbiol., 2001, vol. 55, pp. 625–646.

    Article  PubMed  Google Scholar 

  8. Cheng, J., Park, T.S., Fiscl, A., and Ye, X.S., Cell Cycle Progression and Cell Polarity Require Sphingolipid Biosynthesis in Aspergillus nidulans, Mol. Cell. Biol., 2001, vol. 1, no. 18, pp. 6198–6209.

    Article  Google Scholar 

  9. El Gueddan, N.E., Rauchhaus, U., Moerschbacher, B.M., and Deising, H.B., Developmentally Regulated Conversion of Surface-Exposed Chitin to Chitosan in the Cell Walls of Plant Pathogenic Fungi, New Physiologist, 2002, vol. 156, pp. 103–112.

    Article  Google Scholar 

  10. Harris, S.D. and Momany, M., Polarity in Filamentous Fungi: Moving Beyond the Yeast Paradigm, Fungal Genet. Biol., 2003, vol. 41, pp. 391–400.

    Article  Google Scholar 

  11. De Groot, P.W.L., Ram, A.F., and Klis, F.M., Features and Function of Covalently Linked Proteins in Fungal Cell Walls, Fungal Genet. Biol., 2005, vol. 42, pp. 637–675.

    Google Scholar 

  12. Bowman, S.M. and Free, S.J., The Structure and Synthesis of Fungal Cell Wall, BioEssays, 2006, vol. 28, pp. 799–808.

    Article  PubMed  Google Scholar 

  13. Klis, F.M., Ram, A.F.J., and De Groot, P.W.J., A Molecular and Genomic View of the Fungal Cell Wall, Biology of the Fungal Cell, 2nd ed. The Mycota, 2007, vol. 3, pp. 111–151.

    Google Scholar 

  14. Ma, A.M., Shan, L.J., Wang, H.J., Du, Z.P., and Xie, B.L., Partial Characterization of a Hydrophobin Protein Po.HYD1 Purified from the Oyster Mushroom Pleurotus ostreatus, J. Microbiol. Biotechnol., 2008, vol. 24, pp. 501–507.

    Article  Google Scholar 

  15. Feofilova, E.P., Andriyanova, D.A., Sergeeva, Ya.E., Galanina, L.A., and Usov, A.I., Techniques for Isolation of Cell Walls of Mycelial Fungi Depending on their Ontogenetic Stage, Prikl. biokhimiya i mikrobiologiya, 2010, vol. 46, no. 6 (in press) [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 46, no. 6 (in press)].

  16. Bartnicki-Garcia, S. and Nickerson, W.I., Isolation, Composition and Structure of Cell Wall of Filamentous and Yeast-Like Forms of Mucor rouxii, Biochim. Biophys. Acta, 1962, vol. 58, pp. 102–119.

    Article  CAS  PubMed  Google Scholar 

  17. Nwe, N., Stevens, W.F., Tokura, S., and Tamura, H., Characterization of Chitosan-Glucan Complex Extracted from the Cell Wall of Fungus Gongronella butleri USDB 0201 by An Enzymatic Method, Enzyme and Microbial Technology, 2008, vol. 42, pp. 242–251.

    Article  CAS  Google Scholar 

  18. Sietsma, H. and Wessels, J.G., Chemical Analysis of the Hyphal Walls of Schizophyllum commune, Biochim. Biophys. Acta, 1977, vol. 196, no. 2, pp. 225–239.

    Google Scholar 

  19. Grun, C.H., Hahstenbach, F., Humbel, B.H., Verkleig, A.J., et al., The Structure of Cell Wall α-Glucan from Fission Yeast, Glycobiology, 2005, vol. 15, no. 3, pp. 245–247.

    Article  PubMed  Google Scholar 

  20. Usov, A.I., Andriyanova, D.A., Smirnova, G.P., Galanina, L.A., and Feofilova, E.P., Polysaccharide Composition of the Cell Walls of Penicillium roqueforti Mycelium, Immunologiya, Allergologiya, Infektologiya, 2010, no. 1, p. 35.

  21. Wang, T., Deng, Li., Li, Shikun., and Tan, T., Structural Characterizatiom of a Water-Insoluble (1-3)-α-D-Glucan Isolated from the Penicillium chrysogenum, Carbohydr. polymers, 2007, vol. 67, pp. 133–137.

    Article  CAS  Google Scholar 

  22. Gao, T., Bi, H., Ma, S., and Lu, J., Structure Elucidation and Antioxidant Activity of a Novel α-(1–3), (1-4)-D-Glucan from Aconitum kusnezoffii Reichb., Int. J. Biol. Macromol., 2010, vol. 46, pp. 85–90.

    Article  CAS  PubMed  Google Scholar 

  23. Garibova, L.V. and Lekomtseva, S.N., Osnovy mikologii. Morfologiya i sistematika gribov i gribopodobnykh organizmov. Uchebnoe posobie (Basic Mycology. Morphology and Systematics of Fungi and Fungilike Organisms), Moscow: MKM, 2005.

    Google Scholar 

  24. Feofilova, E.P., Key Role of Chitin in Fungal Cell Walls, in Khitin i khitozan. Poluchenie, svoistva i primenenie, (Chitin and Chitosan. Production, Properties, and Applications), Skryabin, K.G., Vikhoreva, G.A., and Varlamov, V.P., Eds., Moscow: Nauka, 2002.

    Google Scholar 

  25. Nemtsev, S.V., Kompleksnaya tekhnologiya khitina i khitozana iz pantsirya rakoobraznykh (Aggregate Technology for Chitin and Chitosan From Crustacean Shells), Moscow: Izd-vo VNIRO, 2006.

    Google Scholar 

  26. Labischinski, H., Barnickel, G., Leps, L., et al., Initial Data for the Comparison of Murein and Pseudomurein Conformations, Arch. Microbiol., 1980, vol. 127, pp. 196–198.

    Article  Google Scholar 

  27. Vorob’eva, L.I., Arkhei (Archaea), Moscow: IKI “Akademkniga”, 2007.

    Google Scholar 

  28. Feofilova, E.P., Tereshina, V.M., Ivanova, N.I., Genin, Ya.V., and Gopepgauz, F.L., Comparative Investigation of the Physicochemical Properties of Chitin from Crustaceans and Some Microscopic Fungi, Prikl. Biokhim. Mikrobiol., 1980, vol. 24, pp. 377–380.

    Google Scholar 

  29. Feofilova, E.P., Tereshina, V.M., and Memorskaya, A.S., Chitin of Mycelial Fungi: Methods of Isolation, Identification, and Physicochemical Characteristics, Mikrobiologiya, 1995, vol. 64, no. 1, pp. 27–31.

    CAS  Google Scholar 

  30. Feofilova, E.P., Mar’in, A.P., Ushanova, A.E., Sin’ko, N.I., and Gopengauz, F.L., Sorption Characteristics and Thermooxidative Destruction of Chitins and Chitosans from Invertebrates and Fungi, Izv. Akad. Nauk SSSR, 1982, no. 3, pp. 361–368.

  31. Lezica, R.P. and Allua, L.Q., Chitin, Methods in Plant Biochemistry, 1990, vol. 2, pp. 443–481.

    Google Scholar 

  32. Muzzarelli, R.A.A., Chitin, Oxford: Pergamon, 1977.

    Google Scholar 

  33. Feofilova, E.P. and Kuznetsova, L.S., New Function of Chitin: Participation in the Antistressor Protection of Fungal Cells, in Materialy 7-oi Mezhdunarodnoi konferentsii “Sovremennye perspektivy v issledovanii khitina i khitozana” (Proc. 7th Int.Conf. “Modern Prospects in Chitin and Chitosan Research”), St. Petersburg, 2003, pp. 414–416.

  34. Nemtsev, D.V., Kozlov, V.P., Tereshina, V.M., Memorskaya, A.S., and Feofilova, E.P., Changes in the Compositions of Structural Components of Cell Walls of Aspergillus niger Depending on Cultivation Conditions, Prikl. Biokhim. Mikrobiol., 1998, vol. 34, no. 1, pp. 93–98 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 34, no. 1, pp. 87–90].

    Google Scholar 

  35. Feofilova, E.P., Nemtsev, D.V., Tershina, V.M., and Memorskaya, A.S., Developmental Change of the Composition and Content of the Chitin-Glucan Complex in the Fungus Aspergillus niger, Prikl. Biokhim. Mikrobiol., 2006, vol. 42, no. 6, pp. 624–629 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 42, no. 6, pp. 545–549].

    CAS  PubMed  Google Scholar 

  36. Ivshina, T.N., Artamonova, S.D., Ivshin, V.P., and Shirnina, F.F., Isolation of the Chitin-Glucan Complex from the Fruiting Bodies of Pileate Fungi, Prikl. Biokhim. Mikrobiol., 2009, vol. 45, no. 3, pp. 348–353 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 45, no. 3, pp. 348–353].

    Google Scholar 

  37. Kalebina, T.S. and Kulaev, I.S., Role of Proteins in Formation of the Molecular Structure of Yeast Cell Wall, Usp. Biol. Khim., 2001, vol. 41, pp. 105–130.

    CAS  Google Scholar 

  38. Gorkovskii, F.F., Bezsonov, E.E., Plotnikova, T.A., Kalebina, T.S., and Kulaev, I.S., Revealing of Saccharomyces cerevisiae Yeast Cell Wall Proteins Binding Thioflavin T, a Fluorescent Dye Specifically Interacting with Amyloid Fibrils, Biokhimiya, 2009, vol. 74, no. 11, pp. 1498–1505 [Biochemistry (Moscow), vol. 74, no. 11, pp. 1219–1224].

    Google Scholar 

  39. Casanova, M., Lopez-Ribor, J.L., Martinez, J.P., and Sentandreu, R., Characterization of Cell Wall Protein from Yeast and Mycelial Cell of Candida albicans by Labelling with Biotin: Comparison with Other Techniques, Infect. Immun., 1992, vol. 60, pp. 4898–1906.

    CAS  PubMed  Google Scholar 

  40. Chaffin, W.J. and Stocco, D., Cell Wall Protein of Candida albicans, Can. Microbiol., 1983, vol. 29, pp. 1438–1444.

    Article  CAS  Google Scholar 

  41. Belozerskaya, T.A., Fungal Hydrophobins: Structure and Function, Mikol. Fitopatol., 2001, vol. 35, no. 11, pp. 3–11.

    CAS  Google Scholar 

  42. Wösten, H.A.B., Asgeirsdottir, S.A., Krook, J.H., Drenth, J.H.H., and Wessels, J.G.H., The Fungal Hydrophobin Se3p Self-Assembles at the Surface of Aerial Hyphae as a Protein Membrane Constituting the Hydrophobic Rodlet Layer, Eur. J. Cell Biol., 1994, vol. 63, pp. 122–129.

    PubMed  Google Scholar 

  43. Ng, W.L., Ng, T.F., and Rwan, N.S., Cloning and Characterization of the Hydrophobin Genes Differentially Expressed During Fruit Body Development in Lentinus edodes, FEMS Microbiol. Letts., 2000, vol. 185, no. Iss. 2, pp. 139–145.

    Article  CAS  Google Scholar 

  44. Fuchs, U., Crymmek, K.J., and Sweigard, J.A., Five Hydrophobin Genes in Fusarium verticilloides Include Two Required for Microconidial Chain Formation, Fungal Genet. Biol., 2004, vol. 41, pp. 852–864.

    Article  CAS  PubMed  Google Scholar 

  45. Babitskaya, V.G. and Shcherba, V.V., The Nature of Melanin Pigments of Several Micro- and Macromycetes, Prikl. Biokhim. Mikrobiol., 2002, vol. 38, no. 3, pp. 286–291 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 38, no. 3, pp. 247–251].

    Google Scholar 

  46. Gooday, G.W., Green, D., Fawceet, W., and Shaw, S., Sporopollenin Formation in the Zygospore Wall of Neurospora crassa, Arch. Microbiol., 1974, vol. 101, pp. 145–141.

    Article  CAS  PubMed  Google Scholar 

  47. Broocks, J. and Shaw, S., Chemical Structure of the Exine of Pollen Walls and a New Function of Carotenoids in Nature, Nature, 1968, vol. 219, no. 3, pp. 532–533.

    Article  Google Scholar 

  48. Roshchina, V.V., Chemical Signaling in Pollen, Usp. Sovrem. Biol., 1999, vol. 119, no. 6, pp. 557–566.

    CAS  Google Scholar 

  49. Feofilova, E.P., Composition and Biological Role of the Cell Wall in Mycelial Fungi and Its Biotechnological Applications, Immunopatologiya, Allergologiya, Infektologiya, 2009, vol. 2, p. 225.

    Google Scholar 

  50. Kuhn, P.J and Trinci, A.P.J, Cell Walls and Membranes in Fungi—an Introduction, in Biochemistry of Cell Walls and Membranes in Fungi, Kuhn, P.J., Trinci, A.P.J., Jung, M.J., Goosey, M.W., and Copping, L.G., Eds., Berlin: Springer, 1990, pp. 1–30.

    Google Scholar 

  51. Kuznetsova, L.S., Feofilova, E.P., Grigoryan, G.L., and Pivovarova, T.A., Effect of Cultivation Temperature on the Ultrastructure of Cunninghamella japonica and Some Physicochemical Characteristics of the Lipids, Mikrobiologiya, 1987, vol. 56, no. 6, pp. 995–1000.

    CAS  Google Scholar 

  52. Sokolov, S.S., Kalebina, T.S., and Agafonov, M.O., Comparative Analysis of the Structural Role of Proteins and Polysaccharides in Cell Walls of the Yeasts Hansenula polymorpha and Saccharomyces cerevisiae, Dokl. Akad. Nauk, 2002, vol. 384, no. 3, pp. 411–414 [Doklady Biochem. Biophys. (Engl. Transl.), vol. 384, no. 3, pp. 172–175].

    Google Scholar 

  53. Andriyanova, D.A., Meichik, N.R., Nikolaeva, Yu.N., and Feofilova, E.P., A New biological Function of the Cell Wall and Its aminopolysaccharides in Mycelial Fungi, Immunopatologiya, Allergologiya, Infektologiya, 2009, vol. 1, p. 17.

    Google Scholar 

  54. Andriyanova, D.A., Meichik, N.R., Nikolaeva, Yu.I., Galanina, L.A., and Feofilova, E.P., Composition of the Functional Groups of the Cell Wall of Mycelial Fungi, Immunologiya, Allergologiya, Infektologiya, 2010, no. 1, pp. 17–18.

  55. Vorob’ev, D.V., Meichik, N.R., Lobakova, E.S., Ermakov, I.P., and Matveeva, N.P., Ion-Exchange Characteristics of the Cell Walls Isolated from the Thallus of the Lichen Peltigera aphthosa (L.) Willd, Mikrobiologiya, 2009, vol. 78, no. 5, pp. 707–708 [Microbiology (Engl. Transl.), vol. 78, no. 5, pp. 636–642].

    Google Scholar 

  56. Andriyanova, D.A., Usov, A.I., Galanina, L.A., Meichik, N.R., and Feofilova, E.P., Changes in the Carbohydrate Composition of Mucoraceous and Ascomycete Fungi during Ontogenesis, Immunologiya, Allergologiya, Infektologiya, 2010, no. 1, pp. 14–15.

  57. Gooday, G.W., Biosynthesis of the Fungal Wall-Mechanism and Implication, J. Gen. Microbiol., 1977, vol. 99, pp. 1–11.

    CAS  PubMed  Google Scholar 

  58. Levina, N.N. and Lew, R.R., The Role of Tip-Localized Mitochondria in Hyphal Growth, Fungal Genet. Biol., 2006, vol. 43, pp. 123–128.

    Article  Google Scholar 

  59. Potapova, T.V., Itercellular Interactions in Neurospora crassa Hyphae: Twently Years Later, Biol. Membr., 2004, vol. 21, no. 3, pp. 183–191.

    Article  Google Scholar 

  60. Bartnicki-Garcia, S.G., Fundamental Aspects of Hyphal Morphogenesis, Symp. Soc. Gen. Microbiol., 1973, no. 23, pp. 173–192.

  61. Bartnicki-Garcia, S., Bartnicki-Garcia, D.D., and Gierz, G., Determination of Fungal Cell Wall Morphology: the Vesicle Supply Centre, Can. J. Bot., 1995, vol. 73, pp. 372–378.

    Article  Google Scholar 

  62. Guest, G.M., Lin, X., and Momani, M., Aspergillus Nidulans Rho A Is Involved in Polar Growth and Cell Wall Synthesis, Fungal Genet. Biol., 2004, vol. 41, pp. 13–22.

    Article  CAS  PubMed  Google Scholar 

  63. Mills, G.L. and Cantino, E.S., The Glycolipide Involved in Chitin Synthesis by Zoospore Blastocladiella emersonii, Exper. Mycol., 1980, vol. 4, pp. 175–180.

    Article  CAS  Google Scholar 

  64. Hannum, Y.A. and Luberto, C., Ceramide in the Eukaryotic Stress Response, Cell Biology, 2000, vol. 10, pp. 73–79.

    Google Scholar 

  65. Jenkins, G.M., The Emerging Role for Sphingolipids in the Eukaryotic Heat Shock Response, Cell. Mol. Life Sci., 2003, vol. 60, pp. 701–710.

    Article  CAS  PubMed  Google Scholar 

  66. Allen, J., Halverson-Tamboli, R., and Rasenick, M., Lipid Raft Microdomains and Neurotransmitter Signaling, Nat. Rev. Neurosci., 2007, vol. 8, pp. 128–140.

    Article  CAS  PubMed  Google Scholar 

  67. Gooday, G.W., Neil, G., Braun, A., Shofield, D., Muro, C., McCeath, K., and Hunter, L., Dynamics of Chitin Synthesis and Breakdown in Fungal Wall, Proc. Int. Symp. Fungal Cells in Biodefense Mechanism, Miyagi (Japan): Sendai Int. Center, 1996, pp. 239–245.

  68. Terekhov, A.S., Zenova, G.M., Kozhevin, P.A., and Mikhailova, V., Multisubstrate Testing of Soil Actinomycetes, Vestnik Moskovskogo Universiteta. Ser. 19. Soil Sci., 2001, no. 2, pp. 10–13.

  69. Biology of the Prokaryotes, Lengeler, J. Drews, G, and Schlegel, H., Eds., New York: Thieme, 1999.

    Google Scholar 

  70. Watanabe, T., Kezuka, Y., Nonaka, T., Nishizaba, Y., Mitsutoni, M., and Fukamizo, T., Structure and Function of Family 19 Chitinases, 8th Int. Conf. Eur. Chitin Soc., Antalia (Turkey), 2007, p. 6.

  71. Schrempf, H., Recognition and Degradation of Chitin by Streptomycetes, Antonie van Leeuwenhoek, 2001, vol. 79, pp. 285–280.

    Article  CAS  PubMed  Google Scholar 

  72. Vorob’ev, A.V., Manucharova, A.M., Yaroslavtsev, A.M., Belova, E.V., Zvyagintsev, D.G., and Sudnitsyn, I.I., The Composition of the Chitinolytic Microbial Complex and Its Effect on Chitin Decomposition at Various Humidity Levels, Mikrobiologiya, 2007, vol. 76, no. 5, pp. 632–638 [Microbiology (Engl. Transl.), vol. 78, no. 5, pp. 557–562].

    Google Scholar 

  73. Duzhak, A.B., Panfilova, V.I., Duzhak, T.G., and Vasyunina, E.A., Extracellular Chitinases of Mutant Superproducing Strain Serratia marcescens M-1, Biokhimiya, 2009, vol. 74, no. 2, pp. 257–263 [Biochemistry (Moscow), vol. 74, no. 2, pp. 209–214].

    Google Scholar 

  74. Vaije-Kolstad, G., Horn, S.J., van Aten, D.M., Sunstad, B., and Eijsink, V.J., The Non-Catalytic Chitin-Binding Protein CBP21 Serratia marcescens Is Essential for Chitin Degradation, J. Biol. Chem., 2005, vol. 280, pp. 2842–2847.

    Google Scholar 

  75. Hirano, K., Arayaveerasid, S., Seki, K., and Misutomi, M., Effect of Acetil Group of Chitosan on Chitosanase Activity, The 11th Int. Conf. Chitin and Chitosan, Taipei (Taiwan), 2009, p. 138.

  76. Schachtschbel, D., David, A., Menzel, K.-D., Schimek, C., Wostemeyer, J., and Boland, W., Cooperative Biosythesis of Trisporoids by (+) and (−) Mating Types of the Zygomycete Blakeslea trispora, Chem. Biol. Chem., 2008, vol. 9, pp. 3004–3012.

    Google Scholar 

  77. Markov, A.V. and Naimark, E.B., New Achievements in Evolutionary Biology, in Evolyutsiya kosmicheskaya, biologicheskaya, sotsial’naya (Evolution: Space, Biology, and Society), Grinin, L.E., Markov, A.V., and Korotaev, A.V., Eds., Moscow: Knizhnyi dom “Libkorom”, 2009.

    Google Scholar 

  78. Antonov, V.F., Problemy regulyatsii v biologicheskikh sistemakh (Problems of Regulation in Biological Systems), Rubin, A.B., Ed., Moscow: NTsTs, 2007.

    Google Scholar 

  79. Gooday, G.W, Differentiation in Mucorales, in Microbial Differentiation, Answorth, J.M. and Smith, J.E., Eds., Cambridge., 1973, pp. 263–294.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Feofilova.

Additional information

Original Russian Text © E.P. Feofilova, 2010, published in Mikrobiologiya, 2010, Vol. 79, No. 6, pp. 723–733.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feofilova, E.P. The fungal cell wall: Modern concepts of its composition and biological function. Microbiology 79, 711–720 (2010). https://doi.org/10.1134/S0026261710060019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261710060019

Keywords

Navigation